

SPURLOCK STATION PEGS HILL LANDFILL PHASE 1A CELL CONSTRUCTION

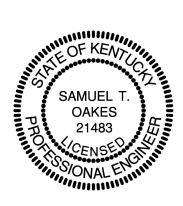
CCR RULE POST CONSTRUCTION DESIGN CERTIFICATION

EAST KENTUCKY POWER COOPERATIVE

COAL COMBUSTION RESIDUAL RULE COMPLIANCE

REV. 0 (09/15/23)

CERTIFICATION


EAST KENTUCKY POWER COOPERATIVE SPURLOCK STATION – PEG HILL LANDFILL PHASE 1A CELL CONSTRUCTION CCR RULE POST-CONSTRUCTION DESIGN CERTIFICATION

CERTIFICATION

I hereby certify, as a Professional Engineer in the Commonwealth of Kentucky, that the composite liner and leachate collection and removal system has been constructed in accordance with the requirements of 40 CFR 257.70. The information in this document was assembled under my direct supervisory control. This report is not intended or represented to be suitable for reuse by East Kentucky Power Cooperative or others without specific verification or adaptation by the Engineer.

S. Tim Oakes, P.E. [21483] - Kenvirons

9/15/23 Date:

TABLE OF CONTENTS

1.0	Intro	DDUCTION	3
2.0	Сом	POSITE LINER SYSTEM	3
	2.1	SUBGRADE	3
	2.2	TWO-FOOT COMPACTED SOIL LAYER	4
	2.3	60-MIL HDPE TEXTURED GEOMEMBRANE	5
3.0	LEAC	HATE COLLECTION & REMOVAL SYSTEM	5
	3.1	GEOCOMPOSITE	5
	3.2	LEACHATE COLLECTION PIPES	5
	3.3	GEOTEXTILE	6
4.0	Repo	ORT LIMITATIONS	6

LIST OF TABLES

 TABLE 1-1
 POST-CONSTRUCTION CERTIFICATION SUMMARY
 3

LIST OF ATTACHMENTS

ATTACHMENT 1 - RECORD DRAWINGS

1.0 INTRODUCTION

On April 17, 2015, the Environmental Protection Agency (EPA) issued the final version of the federal Coal Combustion Residual Rule (CCR Rule) to regulate the disposal of coal combustion residual (CCR) materials generated at coal-fired units. The rule is administered as part of the Resource Conservation and Recovery Act [RCRA, 42 United States Code (U.S.C.) §6901 et seq.], under Subtitle D.

East Kentucky Power Cooperative (EKPC) is subject to the CCR Rule and as such will demonstrate compliance with 40 Code of Federal Regulations (CFR) §257.70(f). Pegs Hill Landfill Phase 1 has been broken up into subphases based on estimated production and disposal of CCR and maintaining the integrity of the leachate collection system materials. Therefore, this document serves as EKPC's post-construction verification for the first subphase designated as Pegs Hill Landfill Phase 1A. This lateral expansion at Pegs Hill Landfill was constructed in accordance with the project's design plans and specifications (composite liner system and leachate collection system) in accordance with the regulations of 40 CFR §257.70. The landfill expansion for Pegs Hill Landfill Phase 1A was designed by Kenvirons and the construction quality assurance (CQA) for cell construction was certified by Kenvirons. Record drawings for the composite liner system and leachate collection assurance to the composite liner system and leachate collection for the composite liner system and leachate collection for Pegs Hill Landfill Phase 1A was designed by Kenvirons. Record drawings for the composite liner system and leachate collection system can be found in Attachment 1.

CONSTRUCTION CRITERIA									
Unit: Phase 1A Cell Construction									
DESCRIPTION	CCR RULE COMPLIANCE								
DESCRIPTION	YES	NO	REPORT REFERENCE						
Composite Liner System	\boxtimes		See Section 2.0						
Leachate Collection & Removal System			See Section 3.0						

TABLE 1-1 POST-CONSTRUCTION CERTIFICATION SUMMARY

2.0 COMPOSITE LINER SYSTEM

The constructed composite liner system consists of three components: an upper component consisting of a 60-mil HDPE textured geomembrane followed in descending order by a Geosynthetic Clay Liner (GCL), an 8-inch GCL Base compacted soil layer with a laboratory hydraulic conductivity of no more than 1x10⁻⁷ centimeters per second (cm/sec) placed over subgrade construction. The constructed composite liner system meets or exceeds the requirements of 40 CFR §257.70(b).

2.1 Subgrade

Shot rock and soil structural fill was taken from excavation activities within and adjacent to the cell to achieve subgrade elevations. Soil materials containing a large percentage of rock/gravel particles were proof roll tested as lifts were placed and compacted. Soil materials that didn't contain a large percentage of rock/gravel particles were density tested using a nuclear moisture/density gauge. Most of the earthwork consisted of excavating earthen materials from the valley slopes and placing this material in the lower elevations of the natural valley drains to achieve subgrade elevations. Structural fill was placed in 12-inch maximum lifts. All materials were bladed into place with a dozer and compacted with a sheepsfoot compactor. Once proper grades were achieved, the cell subgrade was proof rolled utilizing a loaded Volvo A45G articulated dump truck. The proof roll exercise consisted of running the loaded dump truck across the subgrade surface. The ground surface was observed for indication of pumping or rutting. If signs of pumping or rutting were exhibited, the failed areas were reworked and proof roll tested until a passing test was observed. Once complete, the area tested was approved by the certifying Engineer for placement of the eight-inch GCL Base compacted soil layer.

An underdrain system consisting of pipe and gravel was installed beneath final subgrade elevations to intercept discontinuous seeps from underneath Pegs Hill Landfill Phase 1A composite liner system. The underdrain discharges intercepted flow to the sediment pond located east of the landfill.

2.2 Eight-Inch GCL Base Compacted Soil Layer

The source of the compacted soil liner material was the soil borrow area located on EKPC property northwest of the landfill on South Ripley Road, approximately 0.27 miles north of the facility's construction entrance. Processed material with particle sizes of ³/₄ inch or less for the 8-inch portion was used in the compacted soil layer. Samples of the compacted soil layer material were obtained, and testing was performed to assure the material can achieve a laboratory hydraulic conductivity of no more than 1x10⁻⁷ cm/sec. Standard Proctor density and optimum moisture content laboratory testing was performed to determine the construction testing parameters. One soil type, Soil L-1 was utilized from the borrow area. The minimum field compaction for the soil liner layer was 92% of standard Proctor density for Soil. The target moisture content ranged from 15.6% to 21.6% for the GCL Base soil layer.

The GCL Base soil layer was placed on top of completed subgrade and is a minimum 8-inches thick throughout the cell. The soil liner material was spread into one (1) compacted lift using GPS-guided dozers to achieve proper grading. The lift was compacted using a vibratory sheepsfoot compactor. After compacting, the surface was rolled with a smooth drum vibratory roller. Moisture/density tests were taken on the lift using a nuclear density gauge at a frequency of no less than nine (9) tests per acre per lift.

If tested areas did not meet the minimum project requirements, that area was reworked and retested as necessary until retest results indicated compliance with project requirements. The lift was scarified by tracking with dozers and water was added to meet project specifications. When the lift was to grade, a smooth-drum, vibratory roller was used to prepare the compacted soil layer for geosynthetic installation. Prior to installation of geosynthetics, the GCL Base soil layer was inspected and approved by the certifying Engineer.

2.3 <u>60-mil HDPE Textured Geomembrane</u>

Geomembrane deployment was monitored by Kenvirons to ensure that no damage was done to either the material or the soil liner and to ensure construction of the liner system was performed in accordance with the design and specifications for the project. The geomembrane material was deployed such that the panels and seams were approximately perpendicular to the contours of the slope. The panel alignment was adjusted by the Installer to provide orientation perpendicular to the contours and proper shingled overlap. In all cases, the Flexible Membrane Liner (FML) panels were seamed on the day they were placed using a double hot-wedge, fusion welder. Each seam was observed by Kenvirons CQA monitor, with seam defects such as burn-throughs being marked for repair. All patches were heat tacked in place, ground for cleaning and to promote sufficient adhesion and then extrusion welded. Prior to seaming of the FML and again after approximately 4-hours of run time, trial welds were created per welding machine per welder operator each day. The trial seams were tested for peel and shear strength. For 60-mil Textured High Density Polyethylene (HDPE), the minimum peel strength for a fusion weld is 91 pounds per inch and 78 pounds per inch for extrusion welds. The minimum sheer strength for both extrusion and fusion welds is 120 pounds per inch. No panels were welded without the welder passing trial seam testing.

Non-destructive testing was performed on all fusion and extrusion welded panel seams and repairs. Air Pressure testing was conducted on fusion welded seams and vacuum box testing was performed on all extrusion welded seams including panel seaming and repair patches. Destructive samples were taken at selected locations for both fusion and extrusion welded seams. These samples were divided for testing on-site by the installation crew and the remaining sample sent out for independent laboratory testing. Before the geomembrane layer was accepted as complete, the material and all testing described above was verified to have passing results.

3.0 LEACHATE COLLECTION & REMOVAL SYSTEM

The leachate collection system consists of a geocomposite drainage layer material, collection pipes, No. 57 peagravel drainage media and Geotex Coal Drain geotextile. The leachate collection and removal system must be designed, constructed, operated, and maintained to collect and remove leachate from the landfill during the active life and post closure care period as per 40 CFR §257.70(d). Per 40 CFR §257.70(d), the leachate collection and removal system must be designed and operated as follows:

- Maintain less than thirty centimeters depth of leachate over the composite liner;
- Constructed of materials that are chemically resistant to the CCR waste and the expected leachate expected to be generated;
- Sufficient strength and thickness to prevent collapse under the pressures exerted by overlying waste, waste cover materials, and equipment used at the CCR unit;
- Designed and operated to minimize clogging during the active life and post closure care period.

3.1 <u>Geocomposite Drainage Layer</u>

The geocomposite was placed to provide sufficient overlap (approximately six inches) to tie the geonet and geotextile components together for each panel. The geonet component was joined via the installation of plastic pull ties placed a maximum of five feet apart on the longitudinal seams and a maximum of one foot apart on the cross seams. The top geotextile component was then fusion welded, sewn or heat bonded together. Additional geotextile material was heat bonded to the geocomposite to seal up all exposed geonet.

3.2 <u>Leachate Collection Pipes</u>

Leachate collection pipes consist of perforated 4-inch and 8-inch diameter HDPE, DR-11 pipes surrounded with No. 57 sized, low calcium carbonate content, washed peagravel and enclosed within a 14-oz/sy CCR compatible geotextile (Geotex Coal Drain). The 4-inch and 8-inch pipes placed in the cell flow lines are perforated. Cleanout risers for the collection pipes are located along the constructed waste limits to the north and west. Leachate gravity flows into the grout-mat lined ditch east of the cell and finally into Pond 2A.

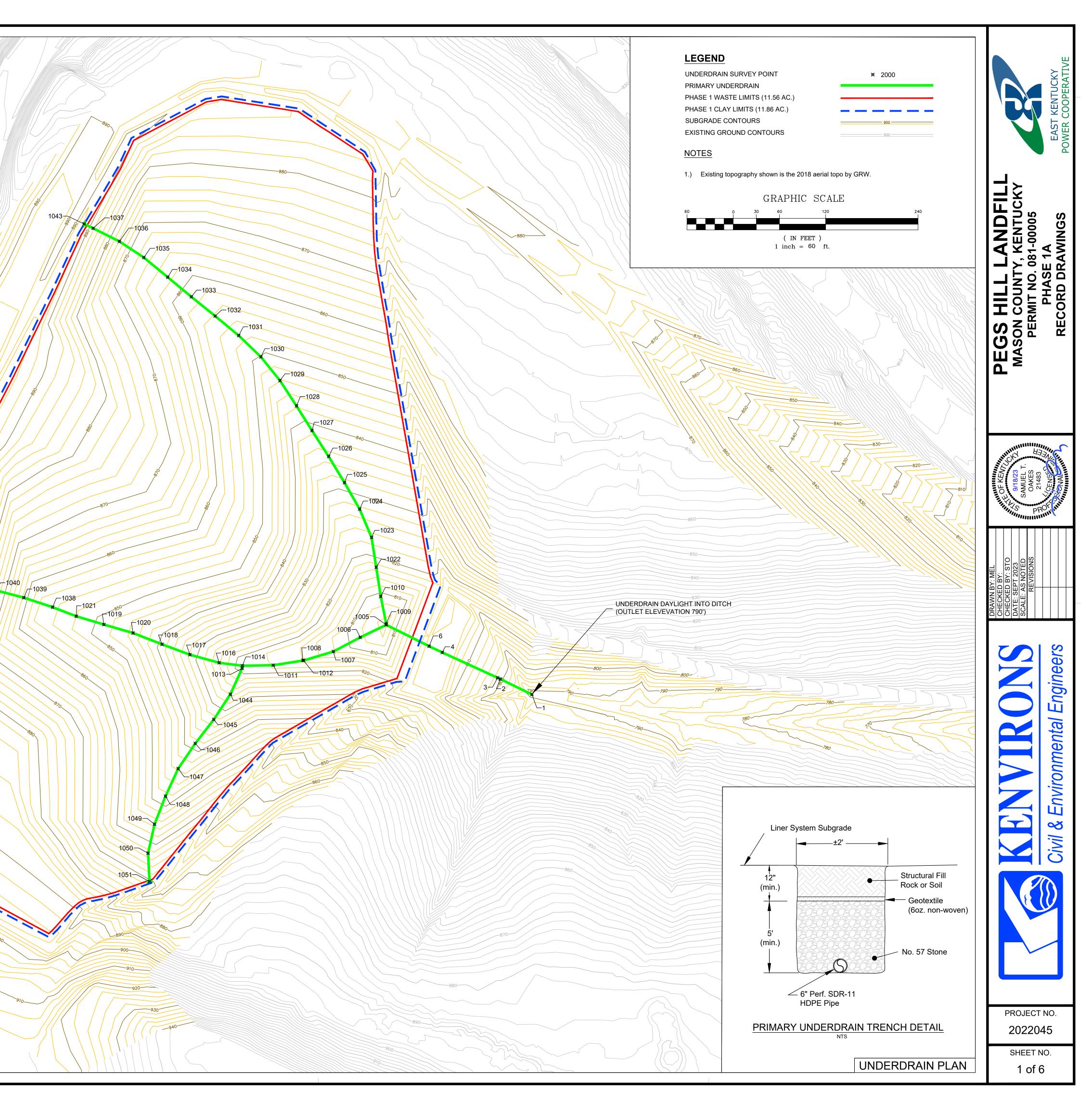
3.3 <u>Geotextile</u>

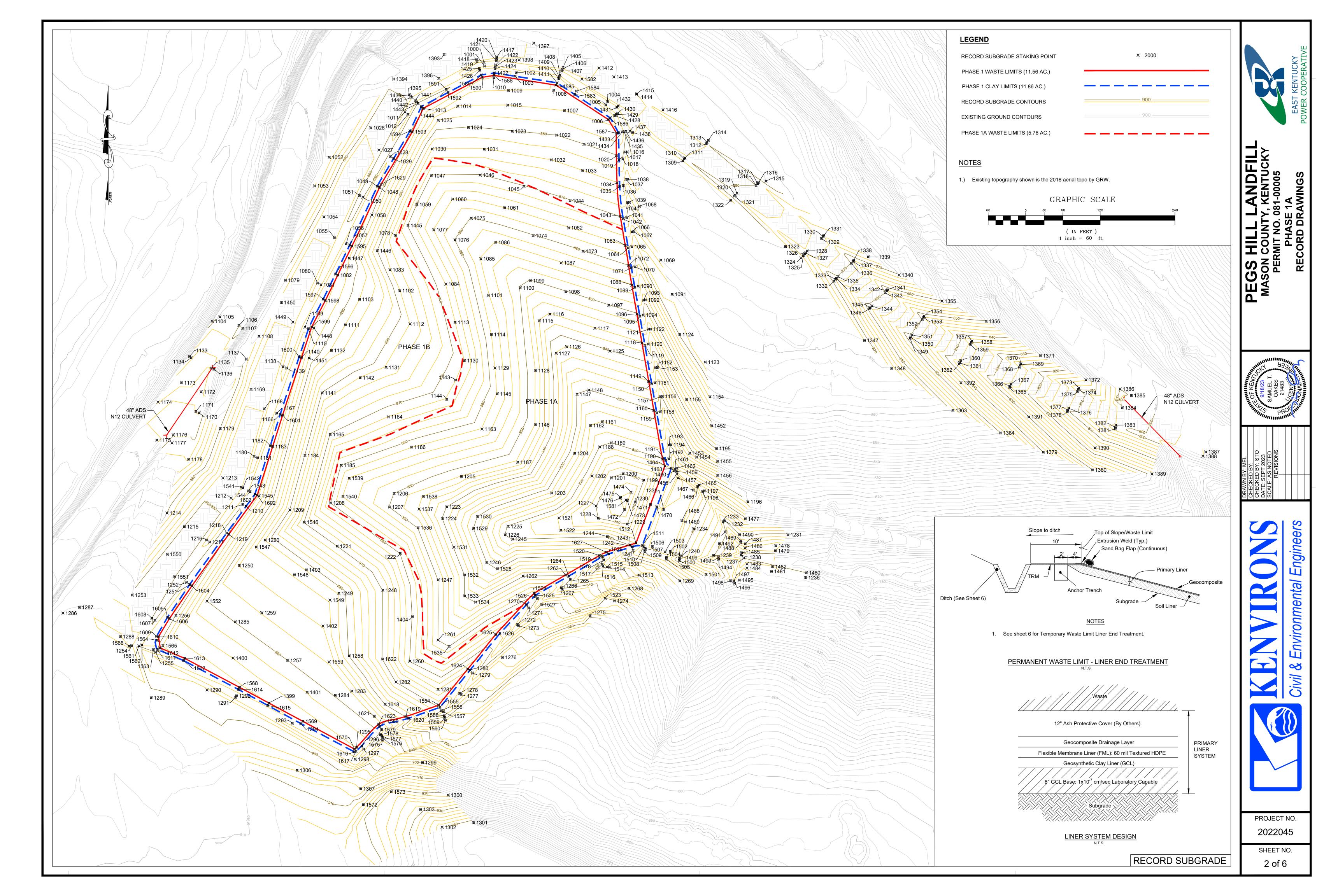
The 14 oz/sy geotextile (Coal Drain) encasing the leachate collection piping and gravel was deployed with enough overlap (at least 6-inches) to connect the textile panels together by heat bonding or with zip ties. Geotextile patches were heat bonded where necessary to repair any cuts or tears in the geotextile.

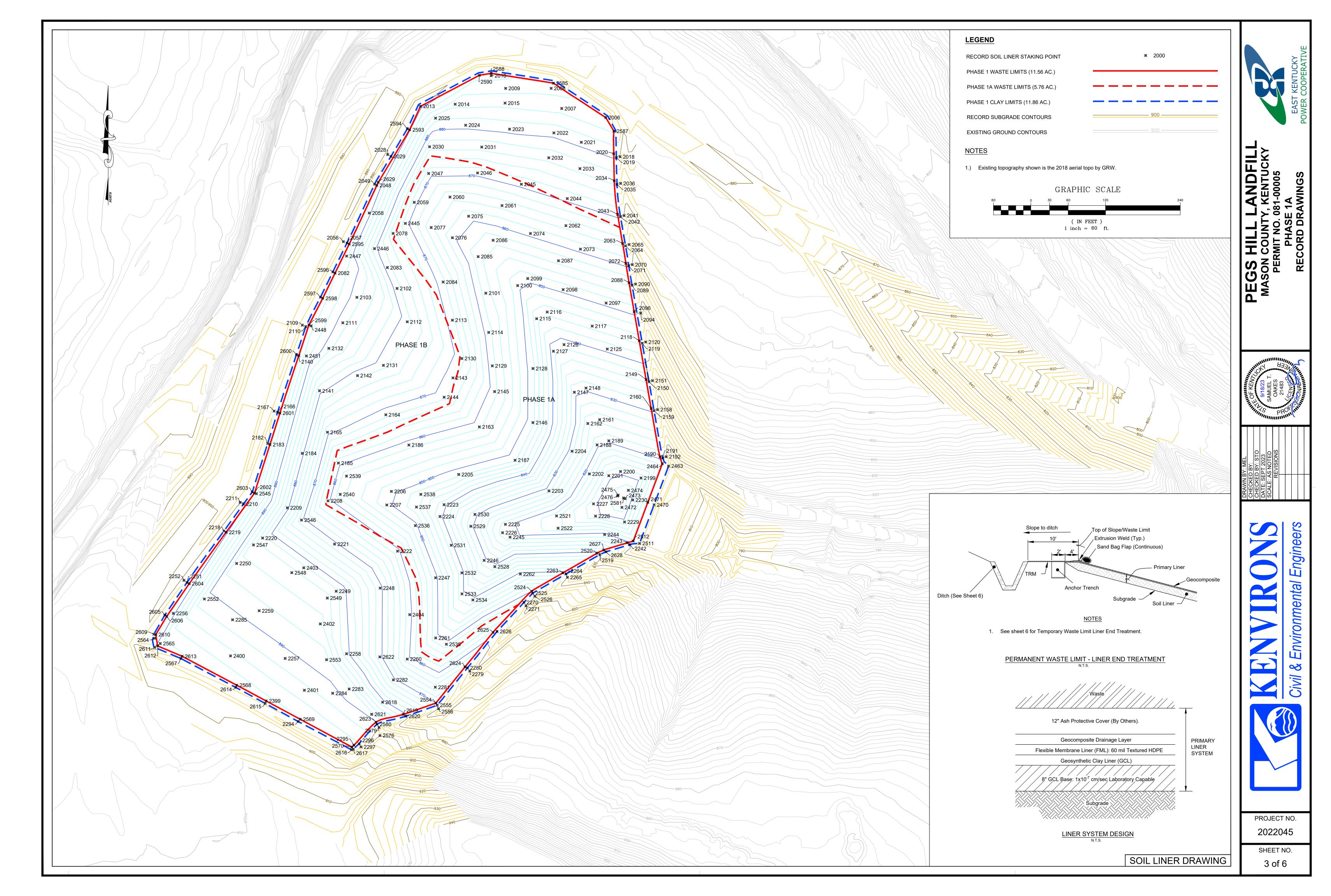
4.0 **REPORT LIMITATIONS**

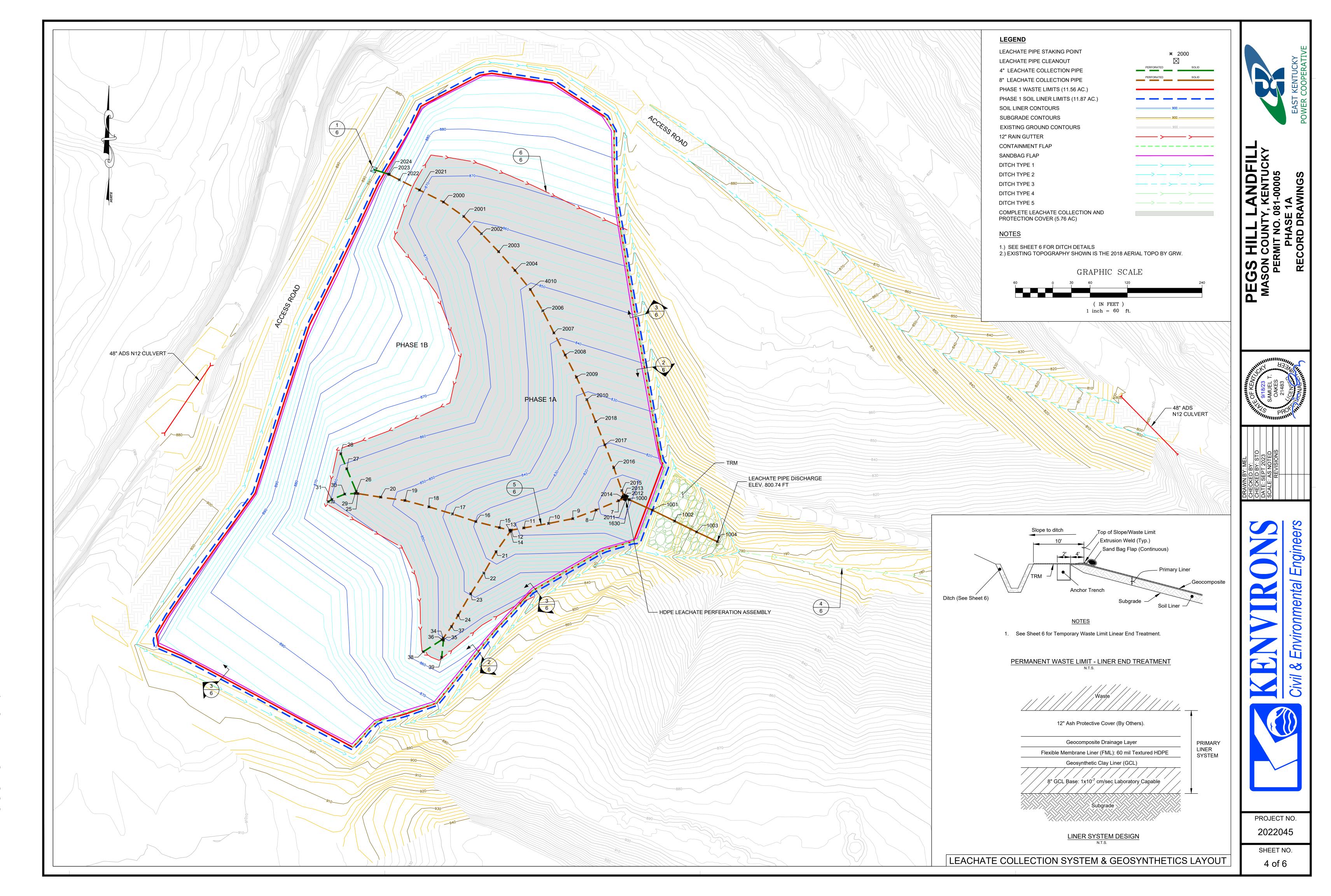
This report is based on data collected and observations made during construction that could be visually seen. Review of design documents and survey information provided by EKPC as well as CQA work performed by Kenvirons design of Pegs Hill Landfill Phase 1A. This post-construction design certification is based on Kenvirons' understanding of the design plans for the lateral expansion and EKPC's plant operations, maintenance, storm water and CCR handling procedures for the newly constructed lateral expansion. Changes in any of these operations or procedures may

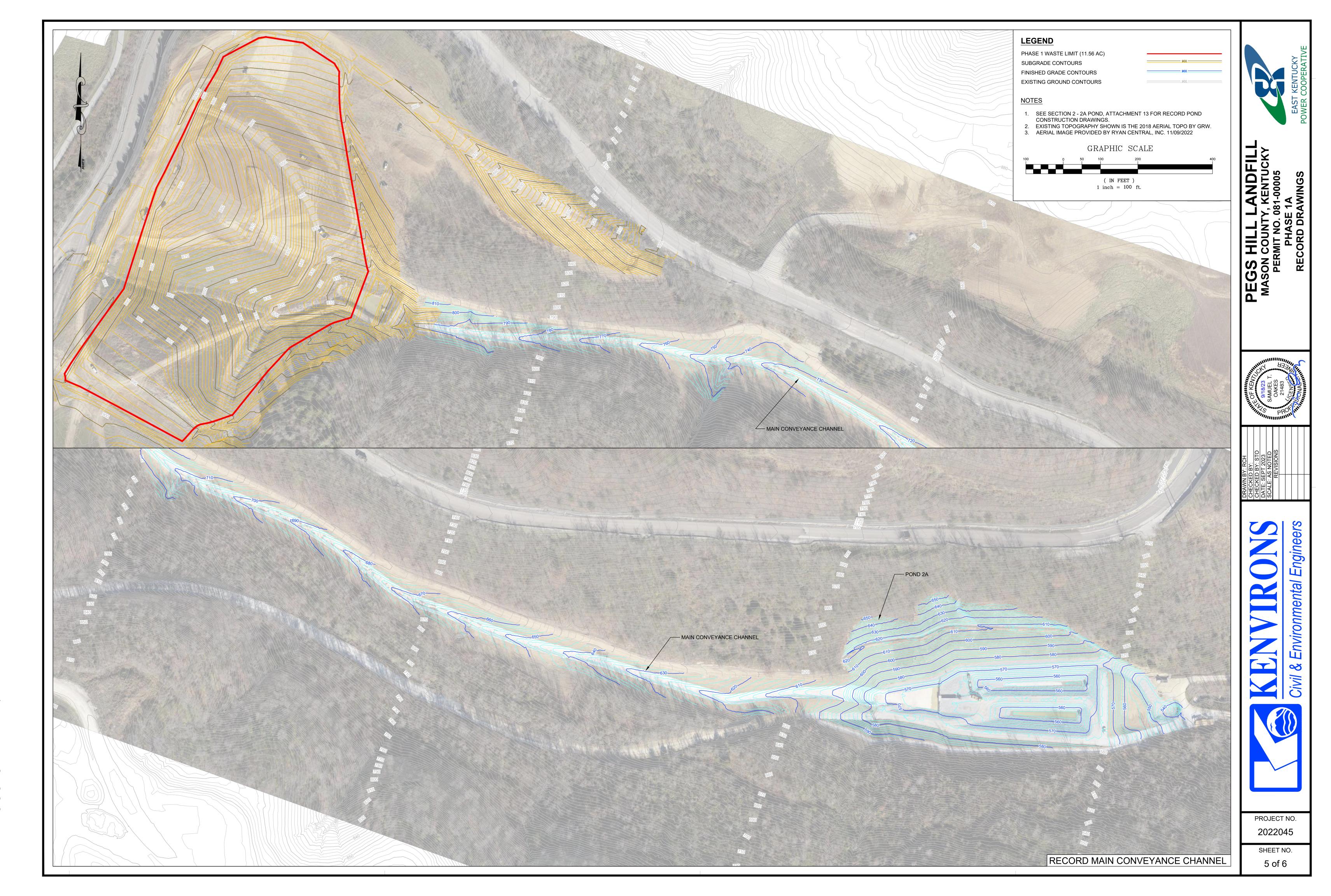
result in deviation from the intended design and operation of Pegs Hill Landfill Phase 1A.

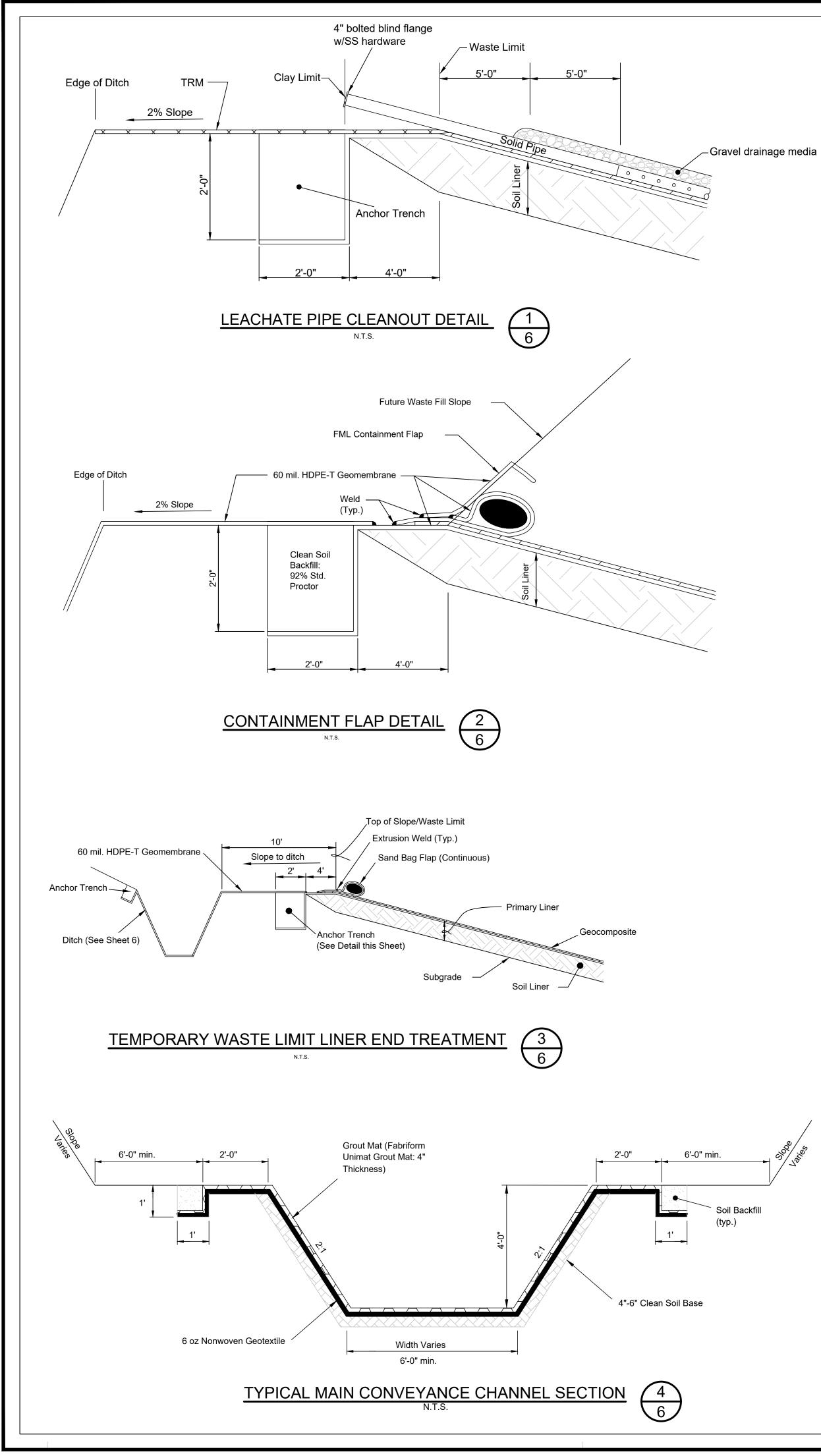

The post-construction certification is based on established engineering principles and provided in a manner consistent with the level of care and skill ordinarily exercised by the engineering consultants under similar circumstances. No other representation is intended.

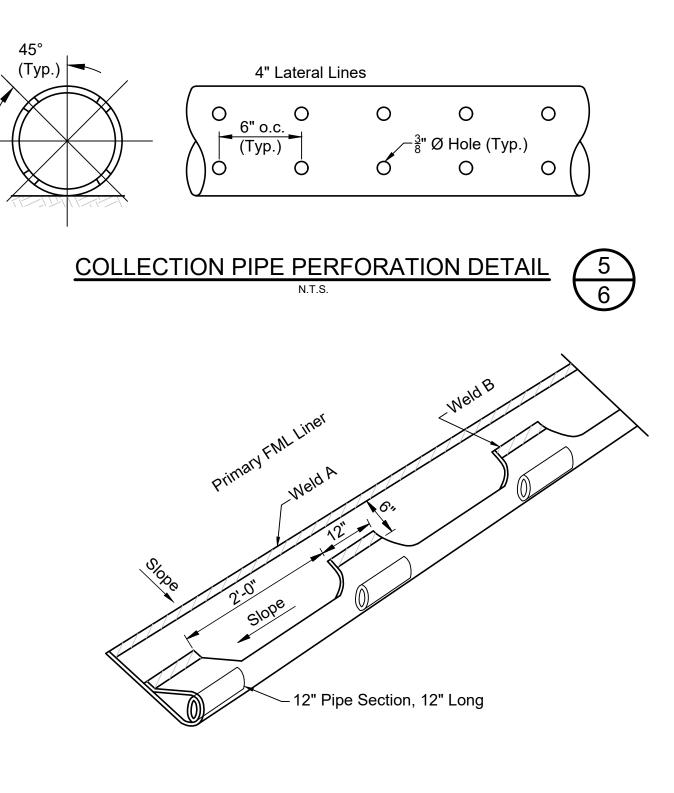

ATTACHMENT 1


RECORD DRAWINGS

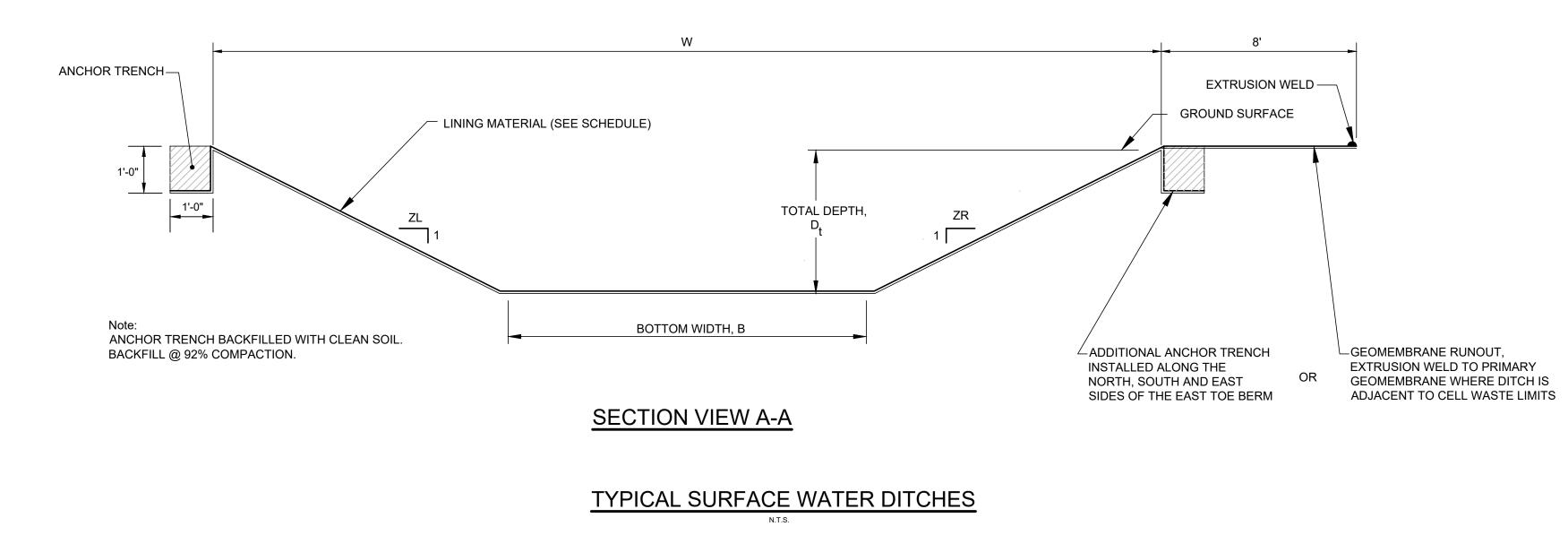

F:\PROJECTS\2022\2022045\REPORTS\CPR\Cell\ATTACHMENT 18 CCR Rule - Post Construction Design Certifications\Report - Peg Hill Phase 1 Post Const Cert.docx

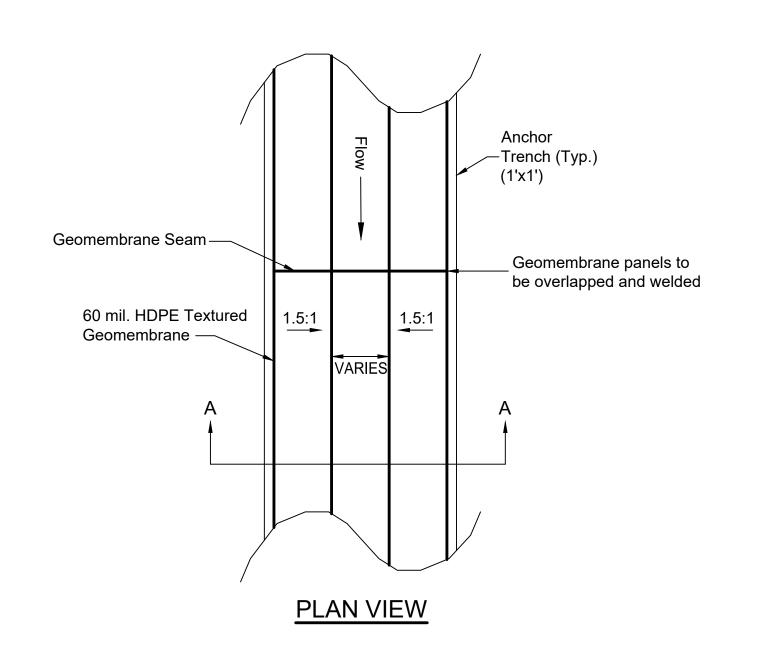

		WELDED CAP (TYPICAL)
	r l	
Record Underdrain Point No. Northing Easting	Survey Points Elevation Desc.	-1052
1 4146469.107 5466937.069 2 4146489.245 5466896.011	790 UNDERDRAIN OUTLET 792.584 Joints	
3 4146490.871 5466892.465 4 4146523.716 5466820.645	796.876 StakedPt1_stk	se la company de la company
6 4146531.808 5466803.509 1005 4146559.579 5466747.888	800.436 Joints3	
1006 4146543.283 5466714.177 1007 4146524.874 5466679.138	807.646 Joints5	r ^{so} osoo
1008 4146513.604 5466639.666 1009 4146561.078 5466747.809	800.524 Joints7	
1010 4146596.427 5466740.704 1011 4146507.152 5466601.19	812.468 Joints9	
1012 4146513.266 5466640.507 1013 4146503.078 5466560.727	814.165 Joints11	
1014 4146506.504 5466561.084 1016 4146510.333 5466530.91	818.659 Joints14	
1017 4146520.836 5466492.948 1018 4146534.25 5466456.735	834.095 Joints16	
1019 4146559.957 5466381.227 1020 4146548.904 5466419.142 1021 4146570.642 5466245.232	840.06 Joints18	
1021 4146570.642 5466345.373 1022 4146634.253 5466734.886 1023 4146672.975 5466728.846	811.815 Joints20	
1023 4146072.373 5460728.840 1024 4146709.696 5466713.319 1025 4146744.175 5466693.677	822.184 Joints22	$ \sim 7 \angle (\langle \cdot \rangle) \sim 10^{-1}$
1026 4146778.146 5466673.038 1027 4146811.741 5466651.46	829.648 Joints24	³ 90
1028 4146843.714 5466631.341 1029 4146876.632 5466609.889	837.153 Joints26	
1023 4146876.052 5466005.083 1030 4146907.398 5466585.093 1031 4146935.047 5466556.267	844.468 Joints28	
1032 4146960.401 5466525.715 1033 4146985.33 5466494.816	850.38 Joints30	
1034 4147010.79 5466464.097 1035 4147036.346 5466433.079	857.116 Joints32	
1033 4147030.340 5400433.079 1036 4147057.226 5466401.36 1037 4147074.351 5466367.322	870.251 Joints34	
1037 4147074.331 5400307.322 1038 4146582.505 5466314.603 1039 4146594.807 5466277.277	849.301 Joints36	900
1033 4146394.807 5466277.277 1040 4146604.408 5466240.799 1041 4146617.806 5466182.919	868.695 Joints38	
1041 4140017.800 5400182.919 1042 4146612.665 5466205.215 1043 4147079.926 5466355.611	880.912 Joints40	
1043 4147075.526 5466555.011 1044 4146469.526 5466545.53 1045 4146436.641 5466523.866	820.388 Joints42	
1046 4146405.52 5466499.877 1047 4146372.961 5466477.696	833.437 Joints44	
1048 4146337.145 5466461.232 1049 4146300.709 5466446.969	843.13 Joints46	1016
1 10491 4140.000,70771 1400 4400	848.587 Joints47	
1045 4140300.705 5400440.505 1050 4146263.111 5466438.563 1051 4146226.259 5466440.484	857.347 Joints48	910-

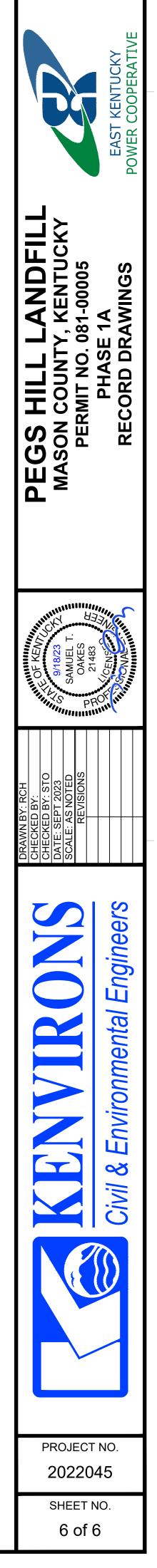




RAIN GUTTER SYSTEM DETAIL N.T.S.




DITCH SCHEDULE


6 6

CHANNEL DESCRIPTIONS	CHANNEL IDENTIFICATION	AVERAGE BOTTOM SLOPE FT/FT	TOTAL DEPTH (FT) Dt (MIN.)	BOTTOM WIDTH B(FT)	SIDE SLOPE ZL / ZR	LINING MATERIAL	DITCH WIDTH, W (FT.)
PERMANENT PERIMITER DITCH	DITCH TYPE 1	1.3%	3.0	6.0	1.5 / 1.5	GROUTMAT	15
PHASE 1 PERIMETER DITCH (TEMPORARY)	DITCH TYPE 2	VARIES	3.0	3.0	1.5 / 1.5	GEOMEMBRANE	12
TEMPORARY ACCESS ROAD DITCH (NORTH SIDE)	DITCH TYPE 3	14.3%	2.0	2.0	2/2	TRM*	10
PHASE 1 CONTAINMENT BERM DITCH	DITCH TYPE 4	1.0%	2.0	2.0	1.5 / 1.5	GEOMEMBRANE	8
MAIN CONVEYANCE CHANNEL	DITCH TYPE 5	6%	4.0	6-20	2/2	GROUTMAT	VARIES

1. TRM: (TURF REINFORCEMENT MATTING) SEMI-PERMANENT SYNTHETIC EROSION CONTROL MATTING WHICH GRASS WILL GROW THROUGH WITH MINIMUM LONG-TERM SHEAR STRESS 6-LB/SF. 2. TOTAL DEPTH OF DITCH (Dt) AND DITCH WIDTH (W) ARE MEASURED TO THE TOP SURFACE OF THE DITCH PROTECTION.

DETAILS