

Spurlock Station Landfill Run-On and Run-Off Control System Plan

East Kentucky Power Cooperative

Coal Combustion Residual Rule Compliance

Revision 0 October 13, 2016

Spurlock Station Landfill Run-On and Run-Off Control System Plan

Prepared for

East Kentucky Power Cooperative Coal Combustion Residual Rule Compliance Winchester, Kentucky

Revision 0 October 13, 2016

Prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

COPYRIGHT © 2016 BURNS & McDONNELL ENGINEERING COMPANY, INC.

INDEX AND CERTIFICATION

East Kentucky Power Cooperative Spurlock Station Landfill Run-On and Run-Off Control System Plan

Report Index

<u>Chapter</u>	•	<u>Number</u>
<u>Number</u>	Chapter Title	of Pages
		_
1.0	Introduction	1
2.0	Review of Existing Information	3
3.0	Run-On and Run-Off Control System Summary	3
4.0	Periodic Assessment and Ammendment	1
5.0	Revisions and Updates	1
Appendix A	Landfill Aerials	2
Appendix B	Landfill Permit Drawings	5
Appendix C	NRCS Web Soil Survey Information	5
Appendix D	Landfill Permit Surface Water Control Calculations	54

Certification

I hereby certify, as a Professional Engineer in the Commonwealth of Kentucky, that the information in this document was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the East Kentucky Power Cooperative or others without specific verification or adaptation by the Engineer.

Kira E. Wylam

Kira Wylam, P.E. (KY #30195)

Date: 10/13/2016

TABLE OF CONTENTS

Page No.

1.0	INTR	RODUCTION	1-1
2.0	REV 2.1 2.2	VIEW OF EXISTING INFORMATION Site Characteristics and Hydrology Engineering Calculations 2.2.1 Methodology 2.2.2 Permit Calculations	
3.0	RUN	I-ON AND RUN-OFF CONTROL SYSTEM SUMMARY	3-1
	3.1 3.2 3.3 3.4	Run-Off Channels3.1.1Terrace Channels3.1.2Down Drain Channels3.1.3Perimeter ChannelsRun-On ChannelsSediment PondsRun-On and Run-Off Compliance Summary	3-1 3-1 3-1 3-2 3-2 3-2
4.0	PER	IODIC ASSESSMENT AND AMMENDMENT	4-1
5.0	REV	ISIONS AND UPDATES	5-1
APPI APPI	ENDIX ENDIX	A - LANDFILL AERIALS B - LANDFILL PERMIT DESIGN DRAWINGS C - NRCS WEB SOIL SURVEY INFORMATION D - LANDFILL PERMIT SURFACE WATER CONTROL CALCULATIONS	

LIST OF TABLES

Page No.

Table 2-1:	Permit Calculation Channel Results	2-	2
Table 2-2:	Permit Calculation Sediment Pond Results	2-	3

LIST OF FIGURES

Page No.

Figure 3-1: Temporary Perimeter Channel Locations	Figure 3-1:	Temporary Perimeter Channel Locations	3-2
---	-------------	---------------------------------------	-----

LIST OF ABBREVIATIONS

Abbreviation	Term/Phrase/Name	
CCR	Coal Combustion Residual	
CFR	Code of Federal Regulations	
EKPC	East Kentucky Power Cooperative	
EPA	Environmental Protection Agency	
HSG	Hydrologic Soil Group	
KAR	Kentucky Administrative Record	
KDEP	Kentucky Department of Environmental Protection	
KPDES	Kentucky Pollution Discharge Elimination System	
MW	Megawatt	
NRCS	National Resources Conservation Services	
NWS	National Weather Service	
RCRA	Resource Conservation and Recovery Act	
RUSLE	Revised Universal Soil Loss Equation	
SCS	Soil Conservation Service	
TR-55	Technical Release 55	
TSS	Total Suspended Solids	
U.S.C.	United States Code	
WSS	Web Soil Survey	

1.0 INTRODUCTION

On April 17, 2015, the Environmental Protection Agency (EPA) issued the final version of the federal Coal Combustion Residual Rule (CCR Rule) to regulate the disposal of coal combustion residual (CCR) materials generated at coal-fired units. The rule will be administered as part of the Resource Conservation and Recovery Act (RCRA, 42 United States Code [U.S.C.] §6901 et seq.), using the Subtitle D approach.

East Kentucky Power Cooperative (EKPC) is subject to the CCR Rule and as such must develop a Run-On and Run-Off Control System Plan per 40 Code of Federal Regulations (CFR) §257.81. This document serves as EKPC's Run-On and Run-Off Control System Plan for the existing CCR Landfill (as defined in §257.53) at Spurlock Station.

The Run-On and Run-Off Control System Plan will contain the following per §257.81(c):

- Documentation of how the run-on and run-off control systems have been designed and constructed to meet the following requirements:
 - A run-on control system to prevent flow onto the active portion of the CCR unit during peak discharge from a 24-hour, 25-year storm; and
 - A run-off control system from the active portion of the CCR unit to collect and control at least the water volume resulting from a 24-hour, 25-year storm.
 - Run-off from the active portion of the CCR unit must be handled in accordance with the surface water requirements under §257.3-3.
- Supporting engineering calculations for the plan.
- Certification by a qualified professional engineer.

The following run-on and run-off control system terms are defined per the CCR Rule:

- Active Portion That part of the CCR unit that has received or is receiving CCR or non-CCR waste and that has not completed closure in accordance with §257.102.
- Run-off Any rainwater, leachate, or other liquid that drains over land from any part of a CCR landfill or lateral expansion of a CCR landfill.
- Run-on Any rainwater, leachate, or other liquid that drains over land onto any part of a CCR landfill or lateral expansion of a CCR landfill.

2.0 REVIEW OF EXISTING INFORMATION

Spurlock Station (Spurlock) is owned and operated by EKPC. Spurlock is a 1,346 net megawatt (MW) coal-fired power plant located in Mason County, approximately five miles northwest of Maysville, Kentucky. The Spurlock CCR Landfill (Landfill) is a special waste landfill permitted by the Kentucky Department of Environmental Protection (KDEP) Permit No. 081-00005. The following subsections provide information associated with the Landfill including design drawings and engineering calculations included in the permit application and construction documentation. An aerial view of the Landfill can be found in Appendix A. Design drawings pertinent to the Run-on and Run-off Control System Plan can be found in Appendix B.

2.1 Site Characteristics and Hydrology

The Landfill site soils belong to hydrologic soil group (HSG) Types C and D comprised of dump, silt loams, and silt clay loam soils. The hydrologic soil classification was obtained from the National Resources and Conservation Service (NRCS) Web Soil Survey (WSS) data. The NRCS WSS data included in Appendix C is based on the Version 11 Survey Data dated September 15, 2015.

The 25-year and 100-year, 24-hour design storm rainfall depths for the site are 4.8 inches and 5.8 inches, respectively, as presented in "Rainfall Frequency Values for Kentucky: Engineering Memorandum No. 2," revised June 1, 1979.

2.2 Engineering Calculations

Run-on and run-off controls for the Landfill were designed by others as part of the permit application to the Commonwealth of Kentucky. The permit calculations were performed using the 25-year, 24-hour rainfall event and/or the 100-year, 24-hour rainfall event. Since the CCR Rule only requires the use of the 25-year, 24-hour rainfall event, calculations based on the 100-year, 24-hour rainfall event are considered conservative and exceed the requirements of the CCR Rule. The pertinent permit calculations related to this run-on and run-off control system plan can be found in Appendix D. The design calculations are discussed in further detail in this Section.

2.2.1 Methodology

The design calculations found in the permit were performed using the SEDCAD 4 computer program. SEDCAD is a generally accepted and comprehensive program that includes hydrology, hydraulics, and design and evaluation of surface water and erosion and sediment control measures. SEDCAD uses Soil Conservation Service (SCS) Curve Number methodology for peak flow and run-off calculation and the Muskingum method for routing. The Revised Universal Soil Loss Equation (RUSLE) is used within SEDCAD to calculate sediment load. The methods of determination of the peak flow rates and run-off volumes are based on the SCS run-off curve number method for Type II rainfall distribution as outlined in Technical Release 55 (TR-55) "Urban Hydrology for Small Watersheds" from the National Resources Conservation Services (NRCS), formerly the SCS.

2.2.2 Permit Calculations

Below is a summary of the pertinent calculations from the Landfill permit relative to this Run-on and Run-off Control System Plan.

2.2.2.1 Channels

The permit calculations found in Appendix D for the terrace ditch, diversion berm, and down drain were performed using the 100-year, 24-hour rainfall event. The calculations in Appendix D for the diversion ditches were performed using the 25-year, 24-hour rainfall event. Design drawings indicating the design dimensions can be found in Appendix B. A summary of the results from the permit calculations for the channels can be found in Table 2-1.

Channel Type	Discharge	Flow Depth	Channel Depth	CCR Compliance Met
Terrace Ditch	6.23 ft^3/sec	0.65 ft	0.75 ft	✓
Diversion Berm	11.95 ft^3/sec	1.76 ft	2.0 ft	✓
Downdrain	79.61 ft^3/sec	0.99 ft	1.5 ft	✓
Diversion Ditch (Class I)	22.15 ft^3/sec	1.99 ft	3.0 ft	~
Diversion Ditch (Class II)	102.84 ft^3/sec	2.56 ft	3.0 ft	✓
Diversion Ditch (Class III)	332.70 ft^3/sec	2.84 ft	3.5 ft	~

Table 2-1: Permit Calculation Channel Results

2.2.2.2 Sediment Ponds

There are two on-site sediment ponds at the Landfill; sediment pond 1 and sediment pond 2. The CCR Rule does not provide any guidance on design of sediment ponds. It only requires that runoff be collected and controlled for the water volume resulting from a 25-year, 24-hour storm event. Therefore, the design requirements for sediment ponds revert back to the existing state requirements. The sediment ponds were designed to meet the requirements of 401 Kentucky Administrative Record (KAR) 48:070(2)(4) which includes minimum storage volume and principal spillway discharge to pass the 25-year, 24-hour rainfall event without emergency spillway discharge. The sediment ponds have been permitted under Kentucky

Pollution Discharge Elimination System (KPDES) Permit No. KY0022250 to discharge through Outfalls 001 and 008. The calculations in Appendix D for the design of the sediment ponds were developed using the 25-year, 24-hour rainfall event. A summary of results from the permit calculations for the sediment ponds can be found in Table 2-2.

Sediment Pond	Emergency Spillway Elevation	Top of Dam Elevation	100-year, 24-hour Rainfall Event Water Elevation ^a	CCR Compliance Met
Pond 1	621.0 ft	624.0 ft	620.98 ft	\checkmark
Pond 2	812.0 ft	814.0 ft	811.39 ft	\checkmark

Table 2-2: Permit Calculation Sediment Pond Results

(a) Meets and exceeds CCR requirement for 25-year, 24-hour rainfall event

3.0 RUN-ON AND RUN-OFF CONTROL SYSTEM SUMMARY

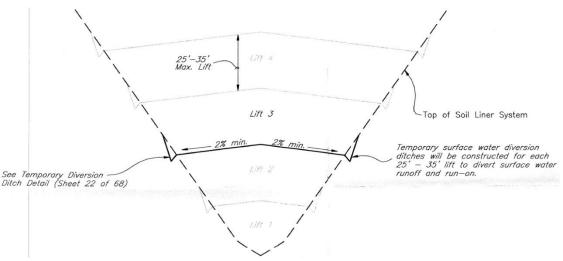
The CCR Rule requires run-on and run-off control systems to prevent flow onto the active portion of the CCR unit and to collect and control discharge from the active portion of the CCR unit as noted in Section 1.0. Section 2.0 summarizes the design of the various run-on and run-off control system features based on the maximum surface water flows at the time the Landfill is fully constructed and capped. Throughout the active life of the Landfill, the run-on and run-off control system will be constructed using the various channels indicated in Section 2.0 to control run-on and run-off onto and from the active portion of the CCR unit. The run-on and run-off control system is comprised of terrace channels, down drain channels, perimeter channels, and sediment ponds. The run-on and run-off control plan drawings which show the locations of each type of channel and the sediment ponds are included in Appendix B.

3.1 Run-Off Channels

Run-off channels collect stormwater that has fallen on the Landfill surface and divert the stormwater from the active portion of the Landfill to the sediment ponds. The plan drawings depict typical channel sections for three types of run-off channels as described below.

3.1.1 Terrace Channels

Terrace channels intercept stormwater run-off at intermediate points along the slope face of the Landfill and direct the stormwater to the down drain channels. The use of the terrace channel reduces the distance run-off travels over the slope face, resulting in decreased velocity and reduced sediment load. There are two types of terrace channels indicated in the permit calculations and design drawings: one created by constructing a terrace on the face of the Landfill (terrace ditch) and the other by constructing a diversion berm on the face of the Landfill (diversion berm).


3.1.2 Down Drain Channels

Down drain channels collect the run-off from the terrace channels and direct the stormwater down the slope of the Landfill in a controlled channel to the perimeter channels.

3.1.3 Perimeter Channels

Perimeter channels collect run-off from the down drain channels and direct the stormwater to the sediment ponds. There are three classes of perimeter channels (diversion ditches) denoted in the permit calculations and design drawings: Class I, Class II, and Class III. Class I channels are grass-lined, Class II channels are lined with 5 inch to 9 inch aggregate, and Class III channels are lined with ¹/₄ to 1 ¹/₂ cubic foot rip rap.

As the Landfill is brought to final grade through filling operations, temporary perimeter channels will each be built with 25- to 35-foot vertical lift of ash to control run-off from the active portion of the CCR unit and divert it to the sediment ponds during filling operations. The temporary perimeter channel typical section is a v-ditch with 2:1 side slopes. Figure 3-1, below, illustrates the location of the temporary perimeter channels as they relate to the placement of CCR material.

3.2 Run-On Channels

Run-on channels intercept surface water drainage and prevent it from running on to the active portion of the Landfill. For on-site drainage, the terrace channels and temporary perimeter channels double as both the run-on and run-off control channels. For off-site drainage, the perimeter channels double as both the run-on and run-off control channels.

3.3 Sediment Ponds

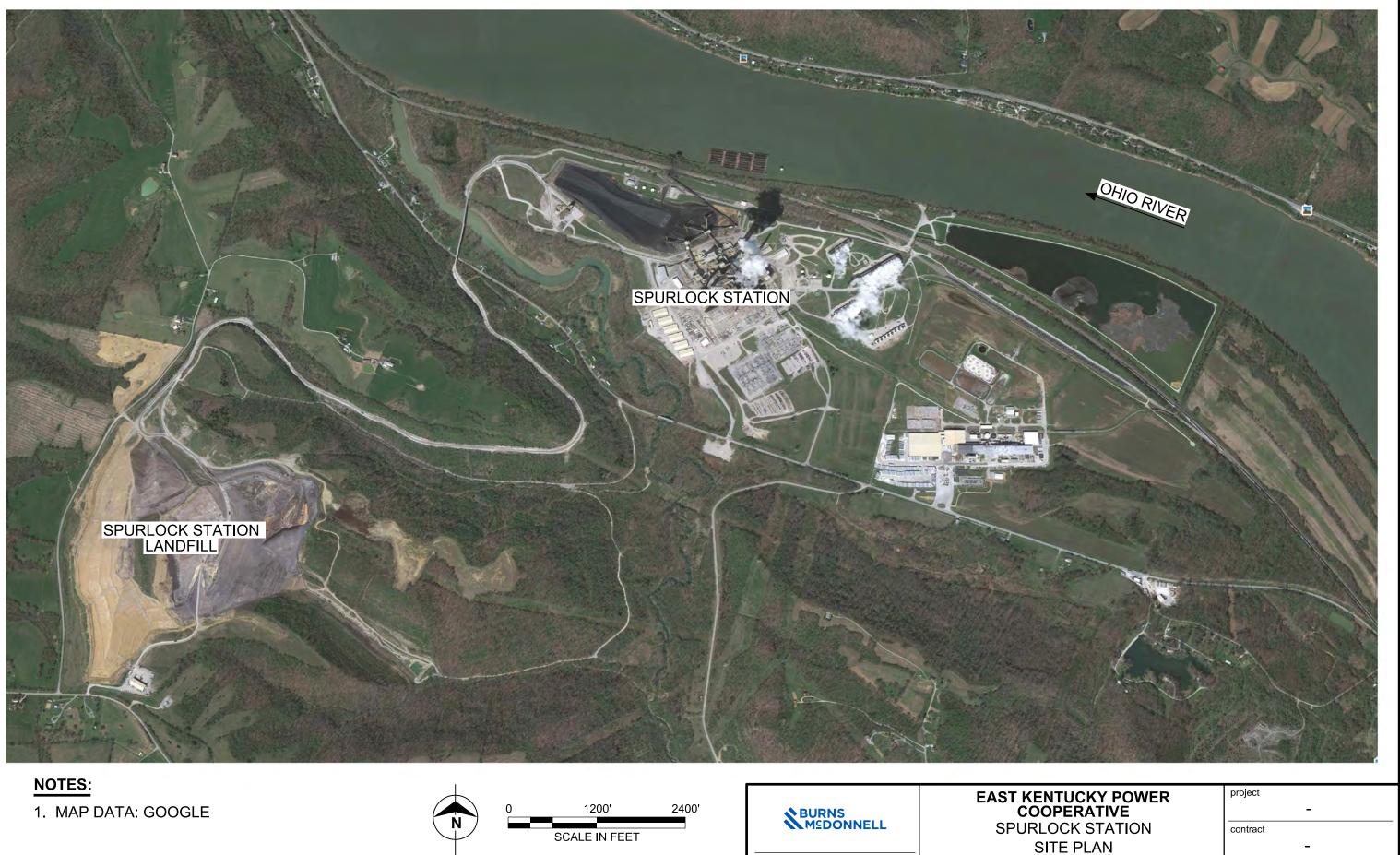
Sediment ponds are a run-off control feature used to reduce the amount of total suspended solids (TSS) leaving the site.

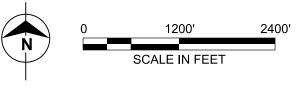
3.4 Run-On and Run-Off Compliance Summary

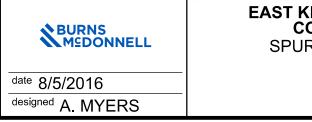
Based on a review of the existing permit calculations provided here-in, the channels in the Run-On and Run-Off Control System Plan were adequately designed to meet the CCR Rule requirement to convey run-on and run-off resulting from the 25-year, 24-hour rainfall event.

Based on a review of the permit calculations provided here-in, the sediment ponds in the Run-On and Run-Off Control System Plan were adequately designed to meet the CCR Rule requirement to collect and

control as least the water volume resulting from the 25-year, 24-hour rainfall event. In addition, as indicated in Section 2.0, sediment ponds 1 and 2 have been permitted to discharge through Outfalls 001 and 008, thus meeting the requirements of 40 CFR §257.3-3.

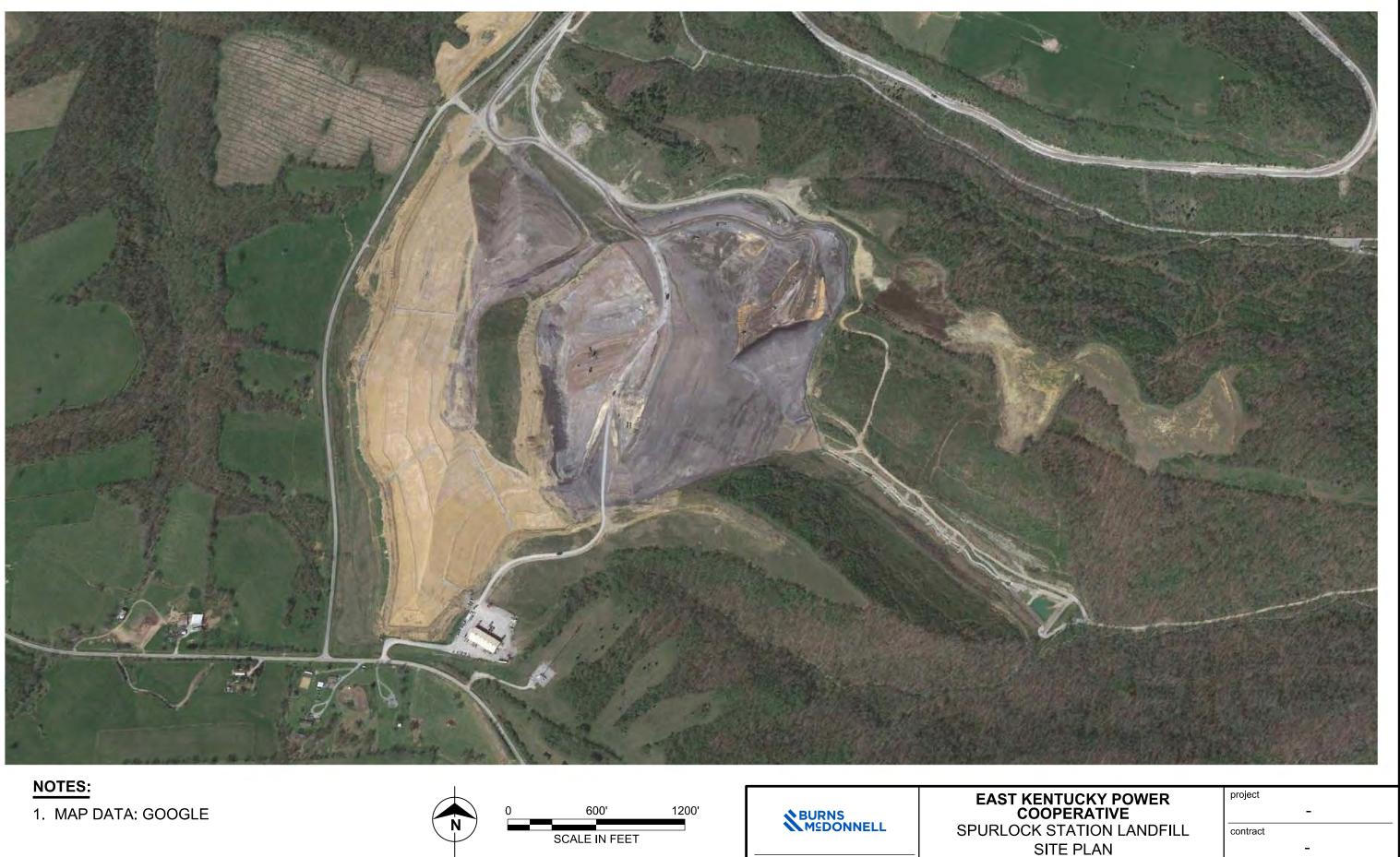

4.0 PERIODIC ASSESSMENT AND AMMENDMENT


The initial run-on and run-off control system plan will be placed in the CCR Operating Record by October 17, 2016. The plan may be amended at any time, and is required to be amended whenever there is a change in conditions which would substantially affect the written plan in effect. A periodic run-on and run-off control system plan will be prepared every five years. Preparing the periodic plans may be achieved by reviewing the current plan in effect and amending the plan as required. In all cases, the date for completing the previous plan is the basis for establishing the deadline to complete the subsequent periodic plan. Each periodic plan will be certified by a qualified professional engineer in the Commonwealth of Kentucky. All amendments and revisions will be placed on the CCR public website within 30 days following placement in the facility's CCR Operating Record. A record of revisions made to this document is included in Section 5.0.


Revision Number	Date	Revisions Made	By Whom
0	10/13/2016	Issued for Initial Compliance	Burns & McDonnell

5.0 REVISIONS AND UPDATES

APPENDIX A - LANDFILL AERIALS

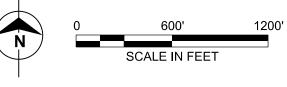

8/5/2016 \\bmcd\dfs\Clients\ENR\EKPC\86144_EKPCFLEETCCR\Design_Common\Site Plans\SK-Spurlock-Landfill.dgn

drawing

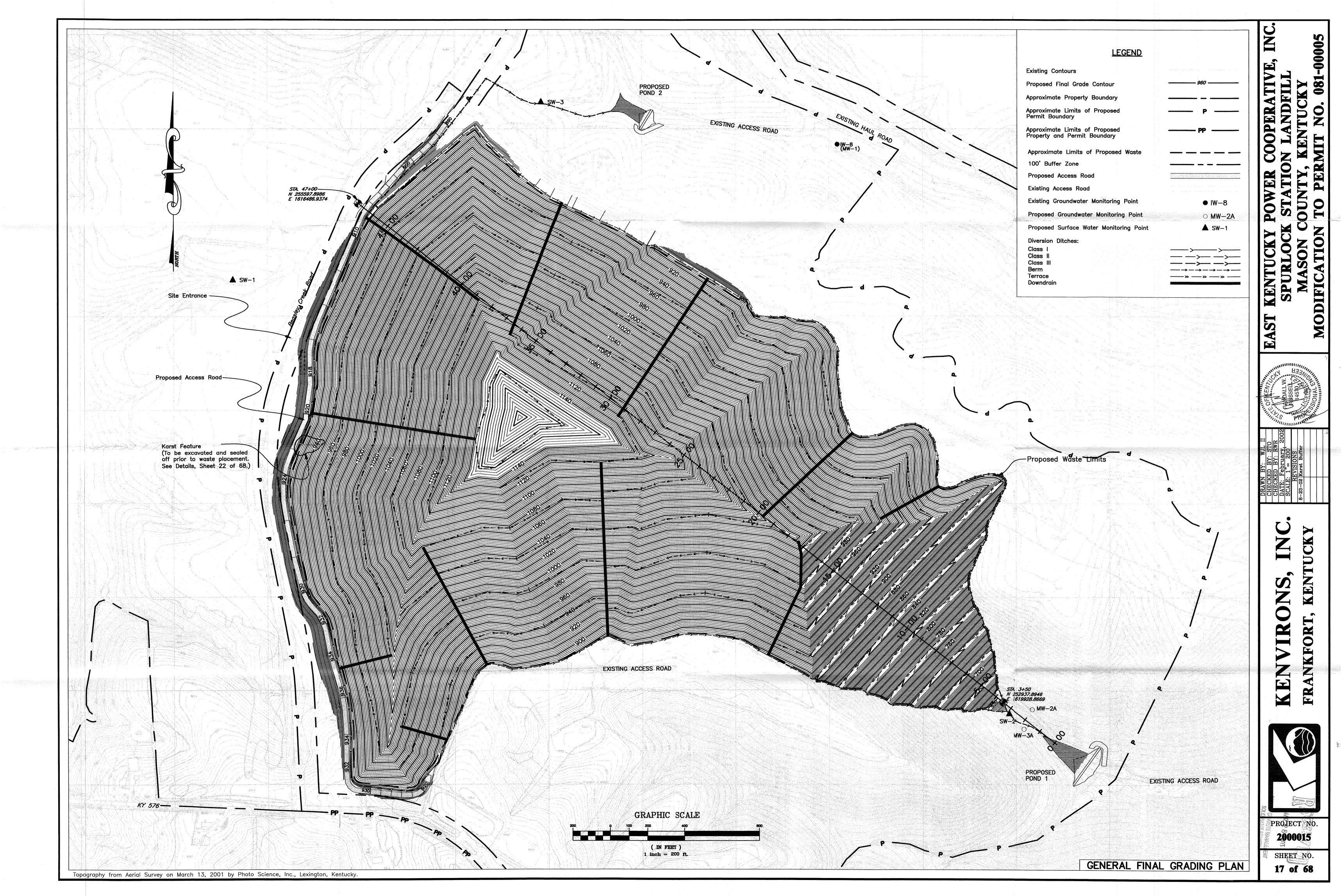
SK - CIVIL - 001

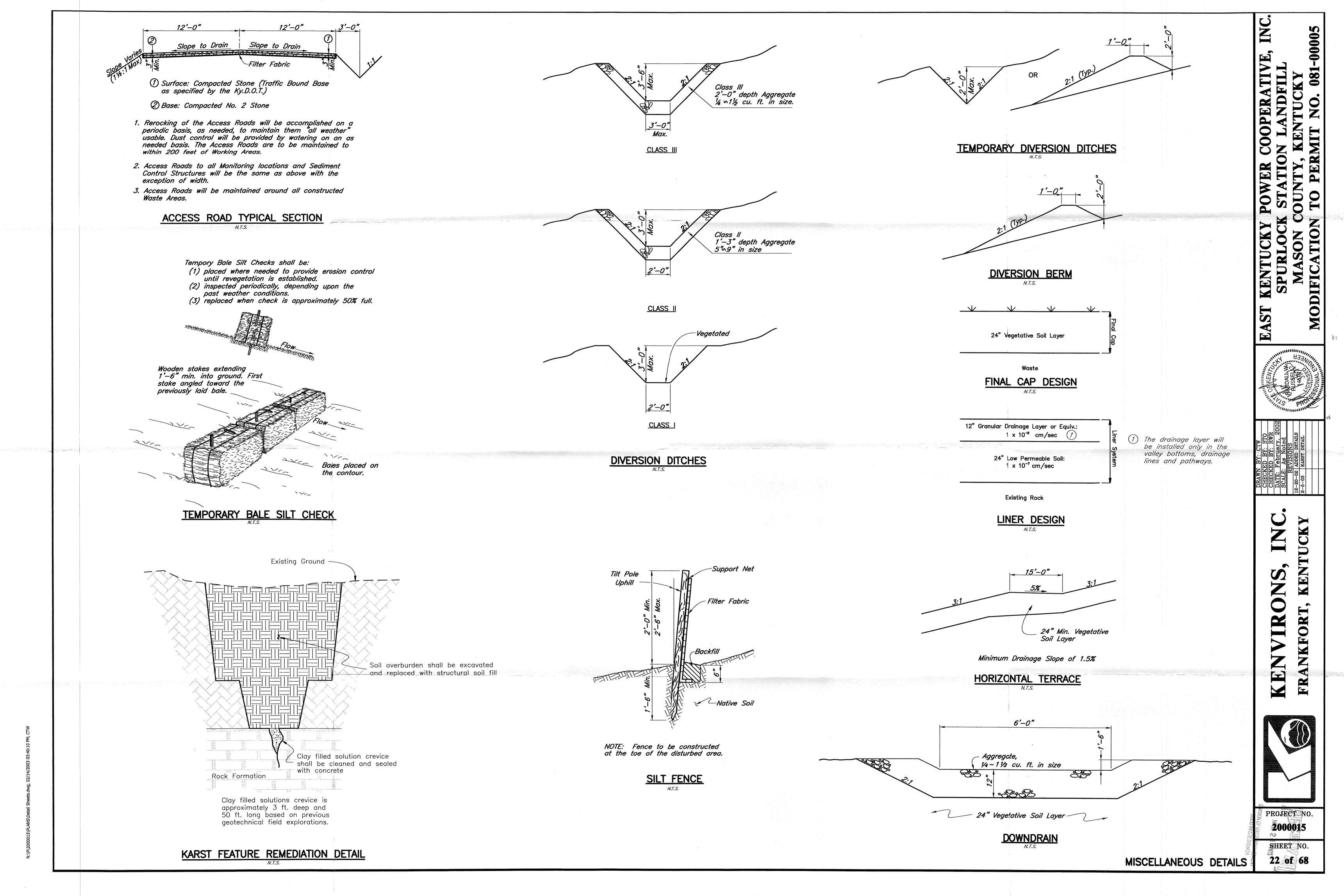
rev no.

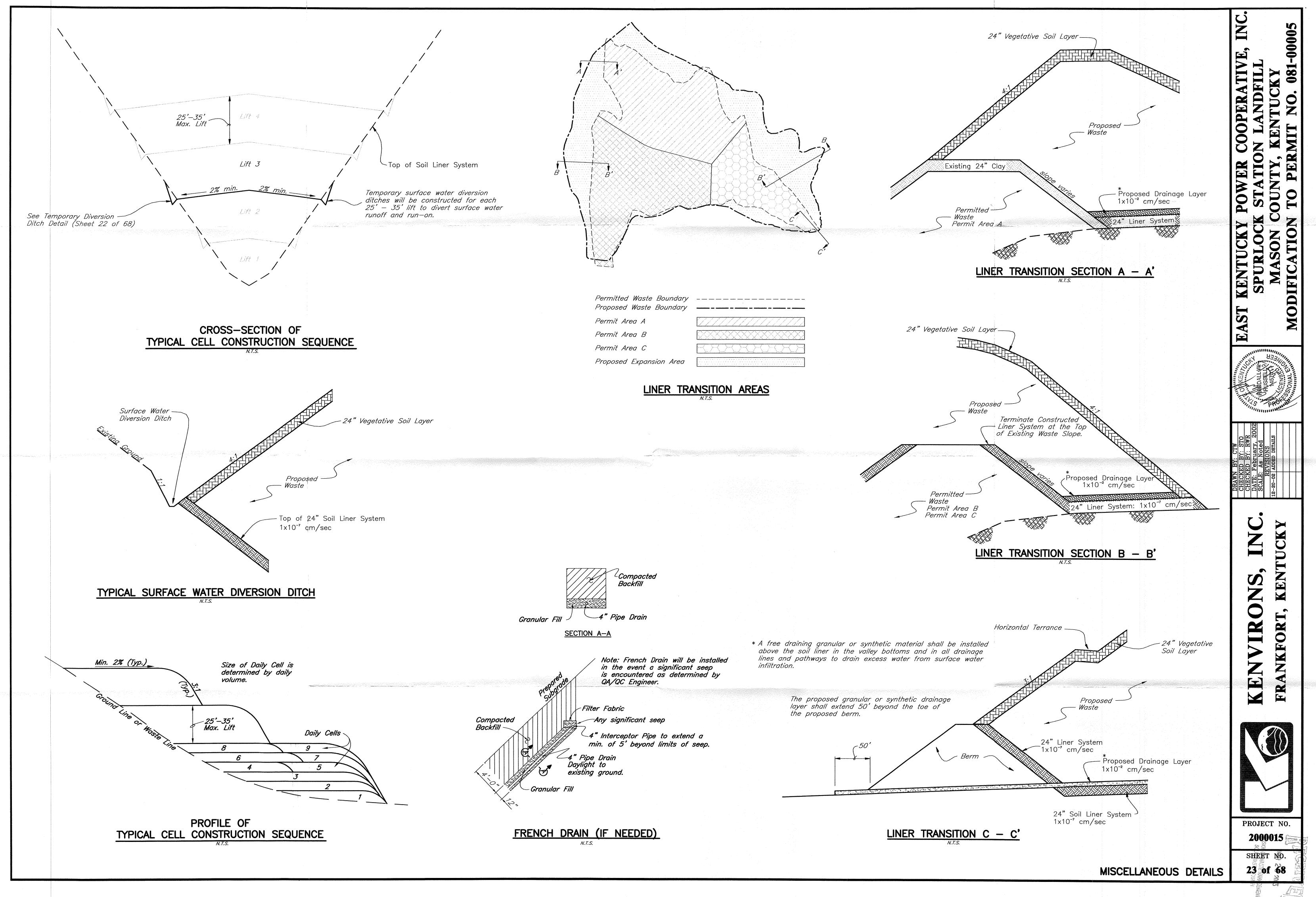
0

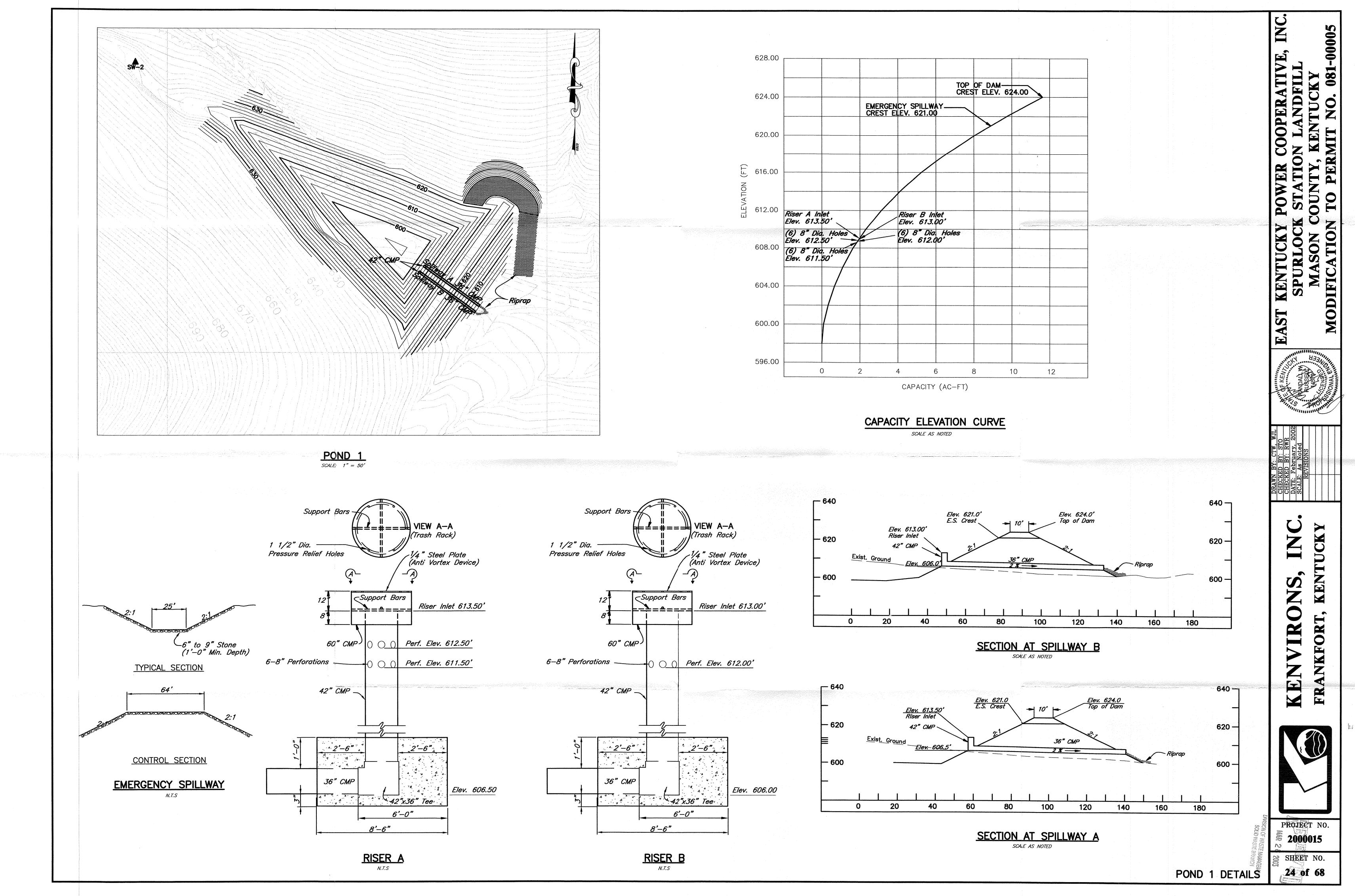

date 8/5/2016

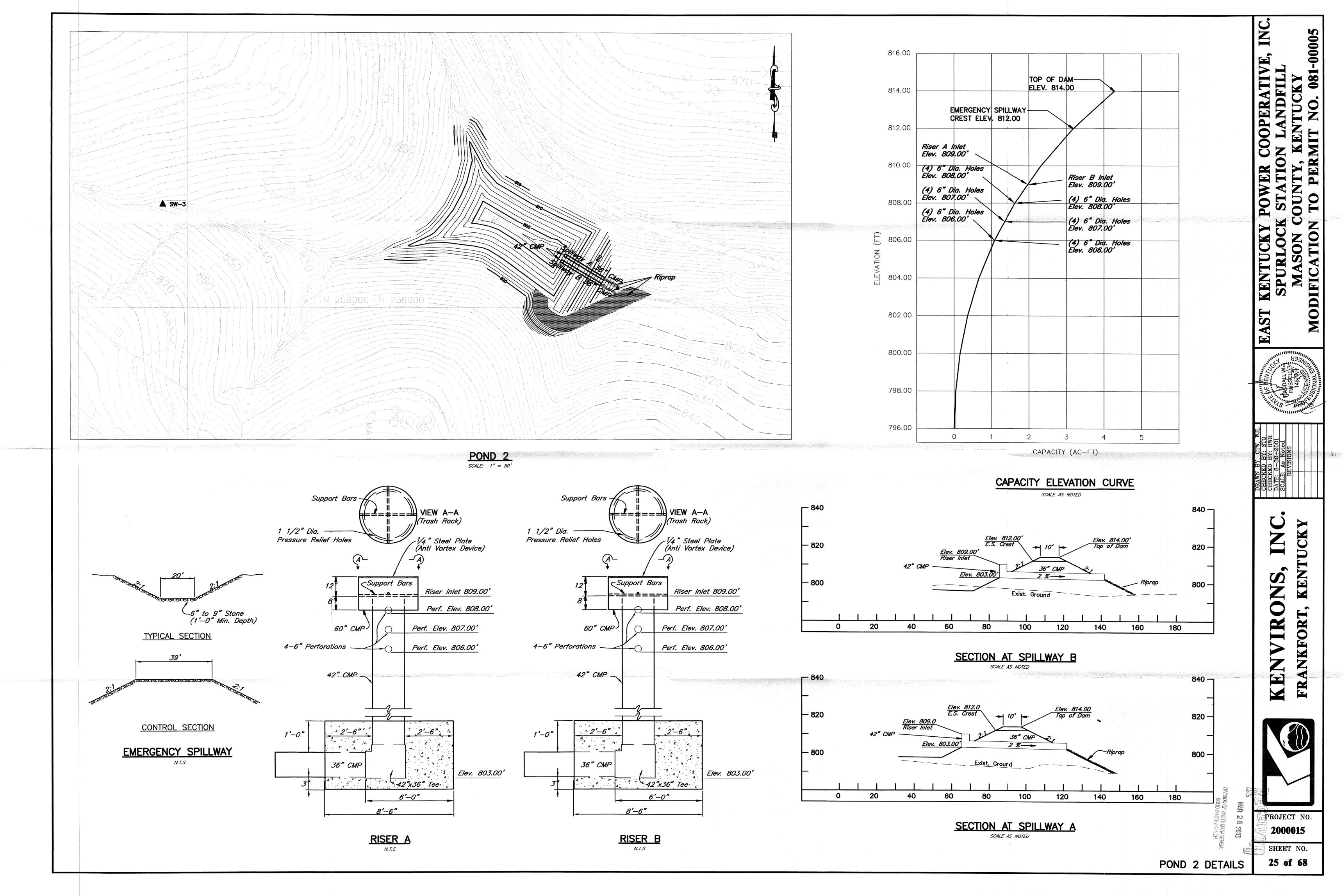
designed A. MYERS

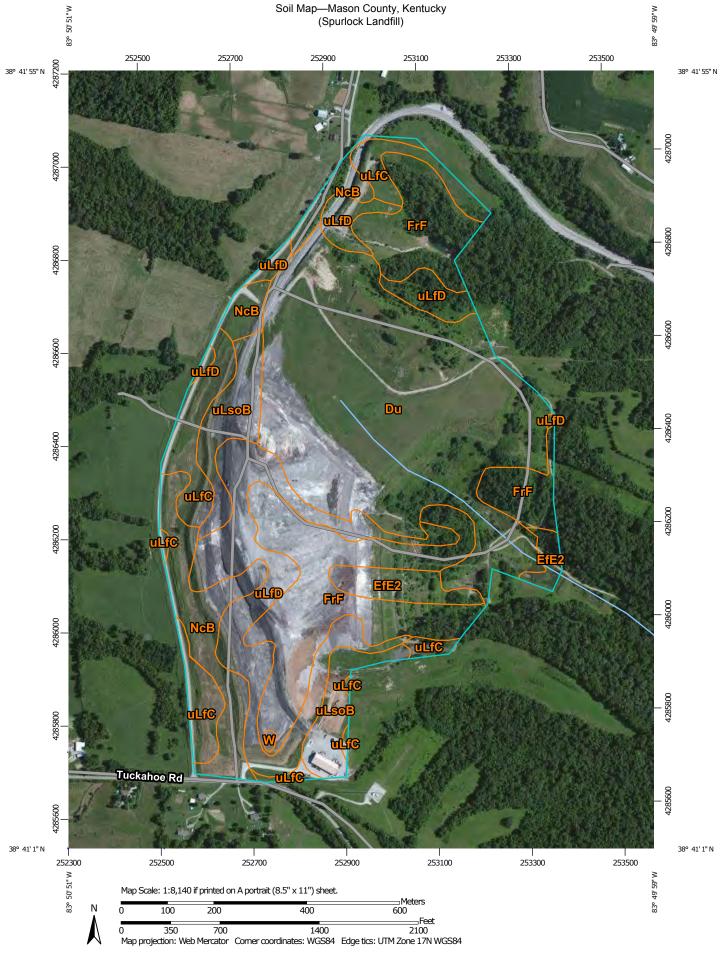

8/8/2016 \\bmcd\dfs\Clients\ENR\EKPC\86144_EKPCFLEETCCR\Design_Common\Site Plans\SK-Spurlock-Landfill-2.dgn


drawing rev no. SK - CIVIL - 002 0

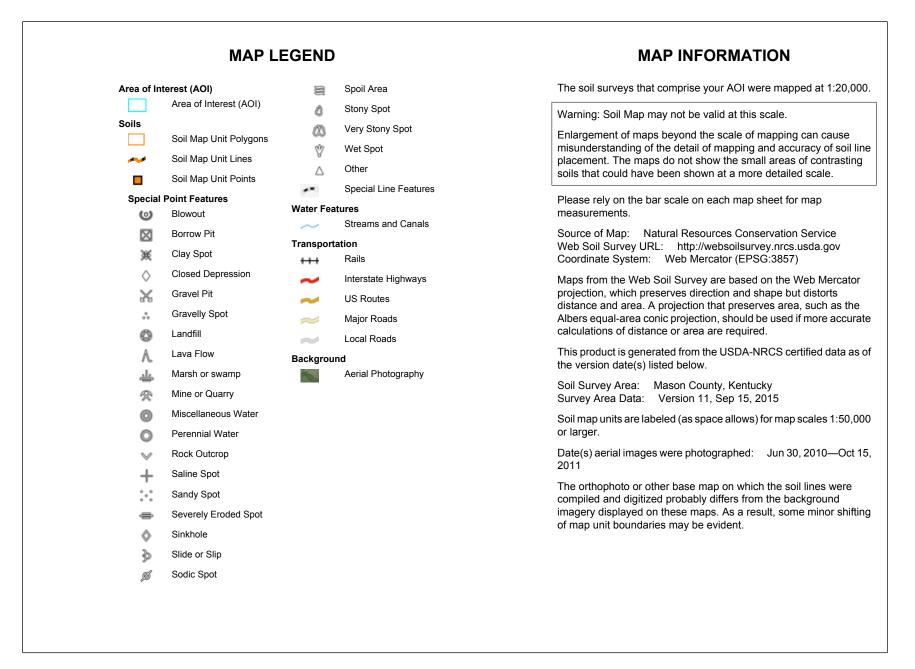

rev no.


APPENDIX B - LANDFILL PERMIT DESIGN DRAWINGS





P\2000015\PLANS\Detail Sheets.dwg, 02/14/2003 03:40:



APPENDIX C - NRCS WEB SOIL SURVEY INFORMATION

USDA

USDA

Map Unit Legend

	Mason County, K	Kentucky (KY161)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Du	Dumps	70.8	36.6%
EfE2	Eden flaggy silty clay loam, 20 to 40 percent slopes, eroded	6.2	3.2%
FrF	Fairmount-Rock outcrop complex, 30 to 60 percent slopes	41.2	21.3%
NcB	Nicholson silt loam, 2 to 6 percent slopes	17.2	8.9%
uLfC Lowell-Faywood silt loams, 6 to 12 percent slopes		15.9	8.2%
uLfD Lowell-Faywood silt loams, 12 to 20 percent slopes		29.7	15.4%
uLsoB Lowell-Sandview silt loams, 2 to 6 percent slopes		12.3	6.4%
W	Water	0.2	0.1%
Totals for Area of Interest		193.6	100.0%

Hydrologic Soil Group and Surface Runoff

This table gives estimates of various soil water features. The estimates are used in land use planning that involves engineering considerations.

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The four hydrologic soil groups are:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas.

Surface runoff refers to the loss of water from an area by flow over the land surface. Surface runoff classes are based on slope, climate, and vegetative cover. The concept indicates relative runoff for very specific conditions. It is assumed that the surface of the soil is bare and that the retention of surface water resulting from irregularities in the ground surface is minimal. The classes are negligible, very low, low, medium, high, and very high.

Report—Hydrologic Soil Group and Surface Runoff

Absence of an entry indicates that the data were not estimated. The dash indicates no documented presence.

Hydrologic Soil Group and Surface Runoff–Mason County, Kentucky				
Map symbol and soil name	Pct. of map unit	Surface Runoff	Hydrologic Soil Group	
Du—Dumps				
Dumps	100		—	

Hydrologic Soil Group and Surface Runoff–Mason County, Kentucky			
Map symbol and soil name	Pct. of map unit	Surface Runoff	Hydrologic Soil Group
EfE2—Eden flaggy silty clay loam, 20 to 40 percent slopes, eroded			
Eden	80	High	D
FrF—Fairmount-Rock outcrop complex, 30 to 60 percent slopes			
Fairmount	60	Very high	D
Rock outcrop	25		—
NcB—Nicholson silt loam, 2 to 6 percent slopes			
Nicholson	90	Medium	С
uLfC—Lowell-Faywood silt loams, 6 to 12 percent slopes			
Lowell	70	Medium	С
Faywood	20	Medium	D
uLfD—Lowell-Faywood silt loams, 12 to 20 percent slopes			
Lowell	70	High	С
Faywood	25	High	D
uLsoB—Lowell-Sandview silt loams, 2 to 6 percent slopes			
Lowell	75	Low	С
Sandview	20	Low	С
W—Water			
Water	100	_	_

Data Source Information

Soil Survey Area: Mason County, Kentucky Survey Area Data: Version 11, Sep 15, 2015

APPENDIX D - LANDFILL PERMIT SURFACE WATER CONTROL CALCULATIONS

SPURLOCK STATION LANDFILL Terrace Ditch Design

100 Yr/24 Hr Rain Event

CTW

Kenvirons, Inc. 452 Versailles Road Frankfort KY 40601

Phone: (502) 695-4357

Filename: Terrace.sc4

1

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	5.800 inches

Particle Size Distribution:

Size (mm)	FMSM Soil Sample Average				
19:0000	99.900%				
9.5000	99.900%				
4.7500	97.600%				
2.0000	88.200%				
0.4250	82.700%				
0.0750	78.700%				
0.0200	65.500%				
0.0050	42.400%				
0.0020	34.900%				
0.0010	30.000%				

Filename: Terrace.sc4

2

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Channel	#1	==>	End	0.000	0.000	Terrace

Structure Networking:

#1 Chan'l 3

Filename: Terrace.sc4

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)
#1	1.700	1.700	6.23	0.52	55.4	134,675	48.92	27.08

Structure Summary:

Particle Size Distribution(s) at Each Structure

Size (mm)	In/Out
19.0000	99.900%
9.5000	99.900%
4.7500	97.600%
2.0000	88.200%
0.4250	82.700%
0.0750	78.700%
0.0200	65.500%
0.0050	42.400%
0.0020	34.900%
0.0010	30.000%

Structure #1:

Structure Detail:

Structure #1 (Vegetated Channel)

Terrace

Triangular Vegetated Channel Inputs:

Material: Tall fescue

Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Freeboard Freeboard Depth (ft) % of Depth Mult. x (VxD)	Limiting Velocity (fps)
3.0:1	20.0:1	2.0	D, D	10.00	5.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard		Class D w/ Freeboard
Design Discharge:	6.23 cfs		6.23 cfs	
Depth:	0.65 ft	0.71 ft	0.65 ft	0.71 ft
Top Width:	14.86 ft	16.34 ft	14.86 ft	16.34 ft
Velocity:	1.30 fps		1.30 fps	
X-Section Area:	4.80 sq ft		4.80 sq ft	
Hydraulic Radius:	0.322		0.322	
Froude Number:	0.40		0.40	
Roughness Coefficient:	0.0761		0.0761	

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	1.700	0.102	0.000	0.000	81.000	М	6.23	0.524
	2							6.23	0.524

Subwatershed Hydrology Detail:

Subwatershed Sedimentology Detail:

Stru #	sws #	Soll K	L (ft)	S (%)	C in	P .	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#1	1	0.350	100.00	33.33	0.2900	0.5000	1	55.4	134,675	48.92	27.08
	· <u>Σ</u>							55.4	134,675	48.92	27.08

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	/ert. Dist. I (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.33	33.33	100.00	4.610	0.006
		6. Grassed waterway	2.00	14.74	737.00	2.120	0.096
#1	1	Time of Concentration:				98	0.102

SPURLOCK STATION LANDFILL Diversion Berm Design

100 Yr / 24 Hr Rain Event

Charles Wilson

Kenvirons, Inc. 452 Versailles Road Frankfort KY 40601

Phone: (502) 695-4357

Filename: Berm.sc4

Printed 02-13-2002

1

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	5.800 inches

Particle Size Distribution:

Size	: (mm)	FMSM Soil Sample Average
19	9.0000	99.900%
	9.5000	99.900%
-	4.7500	97.600%
	2.0000	88.200%
	0.4250	82.700%
	0.0750	78.700%
	0.0200	65.500%
	0.0050	42.400%
	0.0020	34.900%
	0.0010	30.000%

Filename: Berm.sc4

A23-10

.

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Channel	#1	==>	End	0.000	0.000	Diversion Berm

#1 Chan'l

Structure Networking:

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)
#1	3.260	3.260	11.95	1.01	25.8	34,094	12.38	6.79

Structure Summary:

Particle Size Distribution(s) at Each Structure

Size (mm)	In/Out
19.0000	99.900%
9.5000	99.900%
4.7500	97.600%
2.0000	88.200%
0.4250	82.700%
0.0750	78.700%
0.0200	65.500%
0.0050	42.400%
0.0020	34.900%
0.0010	30.000%

Structure Detail:

Structure #1 (Vegetated Channel)

Diversion Berm

Triangular Vegetated Channel Inputs:

Material: Tall fescue

Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
2.0:1	4.0:1	2.0	D, B				5.0

Vegetated Channel Results:

and the states	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	11.95 cfs		11.95 cfs	
Depth:	1.18 ft		1.76 ft	
Top Width:	7.11 ft		10.58 ft	
Velocity:	2.84 fps		1.28 fps	
X-Section Area:	4.21 sq ft		9.32 sq ft	
Hydraulic Radius:	0.562		0.836	
Froude Number:	0.65		0.24	
Roughness Coefficient:	0.0506		0.1458	

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	3.260	0.108	0.000	0.000	81.000	м	11.95	1.006
	Σ	3.260						11.95	1.006

Subwatershed Hydrology Detail:

Subwatershed Sedimentology Detail:

Stru #	SWS #	Soil K	L (ft)	S (%)	с	P	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#1	1	0.350	200.00	25.00	0.2900	0.1000	1	25.8	34,094	12.38	6.79
	Σ							25.8	34,094	12.38	6.79

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1 1	3. Short grass pasture	25.00	50.00	200.00	4.000	0.013	
		6. Grassed waterway	2.00	14.52	726.00	2.120	0.095
#1	1	Time of Concentration:					0.108

SPURLOCK STATION LANDFILL Down Drain Design

100 Yr/24 Hr Rain Event

Charles Wilson

Kenvirons, Inc. 452 Versailles Road Frankfort KY 40601

Phone: (502) 695-4357

Filename: downdrain.sc4

Printed 02-13-2002

1

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	5.800 inches

Particle Size Distribution:

Size (mm)	FMSM Soil Sample Average
19.0000	99.900%
9.5000	99.900%
4.7500	97.600%
2.0000	88.200%
0.4250	82.700%
0.0750	78.700%
0.0200	65.500%
0.0050	42.400%
0.0020	34.900%
0.0010	30.000%

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Channel	#1	==>	End	0.000	0.000	Down Drain

#1 Chan'l

Structure Networking:

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)
#1	22.200	22.200	79.61	6.85	200.5	38,913	13.98	7.65

Structure Summary:

Particle Size Distribution(s) at Each Structure

Size (mm)	In/Out
19.0000	100.000%
9.5000	100.000%
4.7500	98.506%
2.0000	89.019%
0.4250	83.467%
0.0750	79.430%
0.0200	66.108%
0.0050	42.793%
0.0020	35.224%
0.0010	30.278%

Structure #1:

Structure Detail:

Structure #1 (Riprap Channel)

Down Drain

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
6.00	2.0:1	2.0:1	25.0	0.50		

Riprap Channel Results:

PADER Method - Steep Slope Design

N	w/o Freeboard	w/ Freeboard
Design Discharge:	79.61 cfs	
Depth:	0.99 ft	1.49 ft
Top Width:	9.94 ft	11.94 ft
Velocity:	10.13 fps	
X-Section Area:	7.86 sq ft	
Hydraulic Radius:	0.755	
Froude Number:	2.01	
Manning's n:	0.0610	
Dmin:	5.00 in	
D50:	9.00 in	
Dmax:	12.00 in	

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	22.200	0.104	0.104	0.420	81.000	М	81.39	6.849
	77	22.200						79,61	6.849

Subwatershed Hydrology Detail:

Subwatershed Sedimentology Detail:

Strü #	SWS #	Soil K	L (ft)	S (%)	C S	P	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#1	1	0.320	200.00	25.00	0.2900	0.1000	1	202.3	39,269	14.26	7.80
	Σ							200.5	38,913	13.98	7.65

Subwatershed Time of Concentration Details:

#1	1	Time of Concentration:					0.104
		8. Large gullies, diversions, and low flowing streams	25.00	200.00	800.00	15.000	0.014
		6. Grassed waterway	2.00	12.80	640.00	2.120	0.083
#1	1	3. Short grass pasture	25.00	25.75	103.00	4.000	0.007
Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)

Subwatershed Muskingum Routing Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	25.00	25.75	103.00	4.000	0.007
		6. Grassed waterway	2.00	12.80	640.00	2.120	0.083
		8. Large gullies, diversions, and low flowing streams	25.00	200.00	800.00	15.000	0.014
#1	1	Muskingum K:					0.104

SPURLOCK STATION LANDFILL Pond 1 and Pond 2 Design

25 Yr / 24 Hr Rain Event

CTW

Kenvirons, Inc. 452 Versailles Road Frankfort KY 40601

Phone: (502) 695-4357

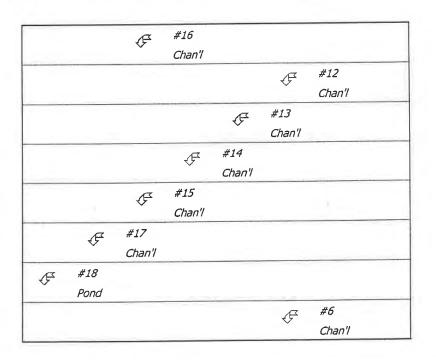
Filename: Spurlock25.sc4

1

General Information

Storm Information:

Γ	Storm Type:	NRCS Type II		
	Design Storm:	25 yr - 24 hr		
	Rainfall Depth:	4.800 inches		

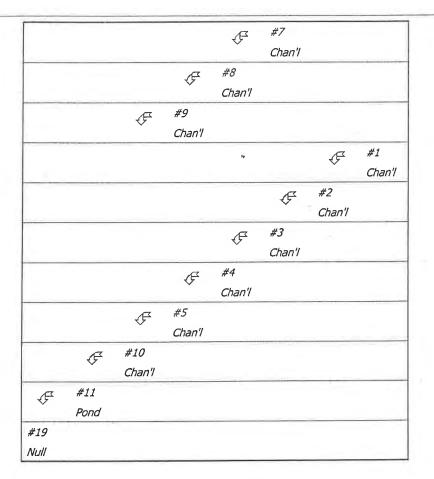

Particle Size Distribution:

Size (mm)	FMSM Soil Sample Average
19.0000	99.900%
9.5000	99.900%
4.7500	97.600%
2.0000	88.200%
0.4250	82.700%
0.0750	78.700%
0.0200	65.500%
0.0050	42.400%
0.0020	34.900%
0.0010	30.000%

.

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Channel	#1	==>	#2	0.025	0.371	Diversion Ditch (Pond1)
Channel	#2	==>	#3	0.051	0.341	Diversion Ditch (Pond 1)
Channel	#3	==>	#4	0.078	0.325	Diversion Ditch (Pond 1)
Channel	#4	==>	#5	0.029	0.441	Diversion Ditch (Pond 1)
Channel	#5	==>	#10	0.005	0.402	Diversion Ditch (Pond 1)
Channel	#6	==>	#7	0.085	0.357	Diversion Ditch (Pond 1)
Channel	#7	==>	#8	0.064	0.324	Diversion Ditch (Pond 1)
Channel	#8	==>	#9	0.042	0.434	Diversion Ditch (Pond 1)
Channel	#9	==>	#10	0.005	0.402	Diversion Ditch (Pond 1)
Channel	#10	==>	#11	0.000	0.399	Diversion Ditch (Pond 1)
Pond	#11	==>	#19	0.000	0.000	Pond 1
Channel	#12	==>	#13	0.129	0.319	Diversion Ditch (Pond 2)
Channel	#13	==>	#14	0.100	0.323	Diversion Ditch (Pond 2)
Channel	#14	==>	#15	0.006	0.338	Diversion Ditch (Pond 2)
Channel	#15	==>	#17	0.056	0.408	Diversion Ditch (Pond 2)
Channel	#16	==>	#17	0.056	0.408	Diversion Ditch (Pond 2)
Channel	#17	==>	#18	0.000	0.406	Diversion Ditch (Pond 2)
Pond	#18	==>	#19	0.000	0.000	Pond 2
Null	#19	==>	End	0.000	0.000	

Structure Networking:



Filename: Spurlock25.sc4

3

SEDCAD 4 for Windows Copyright 1998 Pamela J. Schwab Civil Software Design

i.

Structure Routing Details:

Stru #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	8. Large gullies, diversions, and low flowing streams	2.67	12.00	449.00	4.90	0.025
#1	Muskingum K:					0.025
#2	8. Large gullies, diversions, and low flowing streams	1.48	10.00	676.00	3.64	0.051
#2	Muskingum K:					0.051
#3	8. Large gullies, diversions, and low flowing streams	1.12	10.00	892.06	3.17	0.078
#3	Muskingum K:					0.078
#4	8. Large gullies, diversions, and low flowing streams	17.94	244.00	1,360.01	12.70	0.029
#4	Muskingum K:					0.029
#5	8. Large gullies, diversions, and low flowing streams	5.44	8.00	147.00	6.99	0.005
#5	Muskingum K:					0.005
#6	8. Large gullies, diversions, and low flowing streams	2.00	26.00	1,300.00	4.24	0.085

Filename: Spurlock25.sc4

Printed 02-14-2002

4

SEDCAD 4 for Windows Copyright 1998 Pamela J. Schwab Civil Software Design

Stru #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#6	Muskingum K:					0.085
#7	8. Large gullies, diversions, and low flowing streams	1.10	8.00	730.06	3.14	0.064
#7	Muskingum K:					0.064
#8	8. Large gullies, diversions, and low flowing streams	13.82	236.00	1,708.00	11.15	0.042
#8	Muskingum K:					0.042
#9	8. Large gullies, diversions, and low flowing streams	5.44	8.00	147.00	6.99	0.00
#9	Muskingum K:					0.00
#10	8. Large gullies, diversions, and low flowing streams	5.00	0.54	10.80	6.70	0.00
#10	Muskingum K:					0.000
#12	8. Large gullies, diversions, and low flowing streams	1.00	14.00	1,395.11	3.00	0.12
#12	Muskingum K:					0,129
#13	8. Large gullies, diversions, and low flowing streams	1.07	12.00	1,120.02	3.10	0.10
#13	Muskingum K:					0.10
#14	8. Large gullies, diversions, and low flowing streams	1.39	1.10	79.00	3.54	0.00
#14	Muskingum K:					0.00
#15	8. Large gullies, diversions, and low flowing streams	6.38	99.00	1,552.01	7.57	0.05
#15	Muskingum K:					0.056
#16	8. Large gullies, diversions, and low flowing streams	6.38	99.00	1,552.01	7.57	0.05
#16	Muskingum K:					0.056
#17	8. Large gullies, diversions, and low flowing streams	6.00	0.58	9.66	7.35	0.00
#17	Muskingum K:					0.00

Structure	Summary:
-----------	----------

н 		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc, (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l <u>)</u>
#16		11.100	11.100	22.15	2.60	13.1	8,484	2.29	1.23
#12		0.540	0.540	1.54	0.13	0.4	4,188	1.52	0.83
#13		13.500	14.040	27.04	3.29	14.7	7,420	1.92	1.05
#14		25.200	39.240	71.63	9.19	60.0	11,545	2.98	1.54
#15		11.300	50.540	99.35	11.83	76.3	10,917	3.07	1.57
#17		9.800	71.440	140.48	16.72	91.0	9,511	2.67	1.30
	In	10.500	01.010	170.48	19.18	92.3	9,045	2.55	1.13
#18	Out	10.500	81.940	143.12	19.18	61.7	5,351	0.50	0.25
#6		3.800	3.800	10.86	0.89	3.7	5,708	2.07	1.12
#7		27.000	30.800	63.78	7.21	39.7	9,327	2.54	1.33
#8		18.270	49.070	98.45	11.49	63.3	9,328	2.53	1.33
#9		21.100	70.170	151.35	16.43	93.4	8,907	2.68	1.43
#1		4.400	4.400	12.57	1.03	4.5	5,947	2.16	1.17
#2		4.490	8.890	25.40	2.08	9.5	6,224	2.26	1.22
#3		14.700	23.590	52.75	5.52	28.6	14,183	4.27	1.29
#4		25.700	49.290	102.84	11.54	63.1	11,919	3.39	1.35
#5		24.600	73.890	168.22	17.30	103.0	9,114	2.87	1.53
#10		4.600	148.660	332.70	34.80	197.6	8,721	2.69	1.44
#11	In Out	6.280	154.940	350.64 210.68	36.27 36.27	199.1 125.4	8,345 5,297	2.58 0.48	1.39 0.26
#19	(P)-	0.000	236.880	352.59	55.46	187.1	5,159	0.47	0.00

Particle Size Distribution(s) at Each Structure

Structure #16 (Diversion Ditch (Pond 2)):

Size (mm)	İn/Out
19.0000	100.000%
9.5000	100.000%
4.7500	100.000%
2.0000	100.000%
0.4250	100.000%
0.0750	96.213%
0.0200	80.076%
0.0050	51.835%
0.0020	42.666%
0.0010	36.676%

Structure #12 (Diversion Ditch (Pond 2)):

Size (mm)	In/Out
19.0000	99.900%
9.5000	99.900%
4.7500	97.600%
2.0000	88.200%
0.4250	82.700%
0.0750	78.700%
0.0200	65.500%
0.0050	42.400%
0.0020	34.900%
0.0010	30.000%

Structure #13 (Diversion Ditch (Pond 2)):

Size (mm)	In/Out
19.0000	100.000%
9.5000	100.000%
4.7500	100.000%

Filename: Spurlock25.sc4

Copyright 1998 Pamela J. Schwab Civil Software Design

Size (mm)	In/Out
2.0000	99.687%
0.4250	99.541%
0.0750	98.386%
0.0200	81.885%
0.0050	53.006%
0.0020	43.630%
0.0010	37.504%

Structure #14 (Diversion Ditch (Pond 2)):

	Size (mm)	In/Out
	19.0000	100.000%
1.012	9.5000	100.000%
	4.7500	100.000%
	2.0000	100.000%
	0.4250	99.889%
	0.0750	98.390%
*	0.0200	81.888%
	0.0050	53.008%
	0.0020	43.632%
	0.0010	37.506%

Structure #15 (Diversion Ditch (Pond 2)):

In/Out 100.000%
100.000%
100.000%
99.487%
97.479%
96.217%
94.183%
78.386%
50.742%
41.766%
35.902%

Structure #17 (Diversion Ditch (Pond 2)):

Size (mm)	In/Out
19.0000	100.000%

Filename: Spurlock25.sc4

Copyright 1998 Pamela J. Schwab Civil Software Design

Size (mm)	In/Out
9.5000	100.000%
4.7500	99.532%
2.0000	97.682%
0.4250	96.527%
0.0750	94.208%
0.0200	78.407%
0.0050	50.755%
0.0020	41.777%
0.0010	35.911%

Structure #18 (Pond 2):

Size (mm)	In	Out
19.0000	100.000%	100.000%
9.5000	100.000%	100.000%
4.7500	99.504%	100.000%
2.0000	97.545%	100.000%
0.4250	96.326%	100.000%
0.0750	93.983%	100.000%
0.0200	78.219%	100.000%
0.0050	50.634%	75.732%
0.0020	41.677%	62.336%
0.0010	35.826%	53.584%

Structure #6 (Diversion Ditch (Pond 1)):

Size (mm)	In/Out
19.0000	99.900%
9.5000	99.900%
4.7500	97.600%
2.0000	88.200%
0.4250	82.700%
0.0750	78.700%
0.0200	65.500%
0.0050	42.400%
0.0020	34.900%
0.0010	30.000%

Structure #7 (Diversion Ditch (Pond 1)):

Filename: Spurlock25.sc4

A23-64

Copyright 1998 Pamela J. Schwab Civil Software Design

	In/Out
19.0000	100.000%
9.5000	100.000%
4.7500	99.774%
2.0000	98.888%
0.4250	98.370%
0.0750	95.836%
0.0200	79.762%
0.0050	51.632%
0.0020	42.499%
0.0010	36.532%

Structure #8 (Diversion Ditch (Pond 1)):

In/Out
100.000%
100.000%
99.861%
99.305%
98.979%
95.979%
79.881%
51.709%
42.562%
36.587%

Structure #9 (Diversion Ditch (Pond 1)):

Size (mm)	In/Out
19.0000	100.000%
9.5000	100.000%
4.7500	99.133%
2.0000	95.723%
0.4250	93.728%
0.0750	90.405%
0.0200	75.242%
0.0050	48.706%
0.0020	40.091%
0.0010	34.462%

Structure #1 (Diversion Ditch (Pond1)):

A23-65

Filename: Spurlock25.sc4

Copyright 1998 Pamela J. Schwab Civil Software Design

Size (mm)	In/Out
19.0000	99.900%
9.5000	99.900%
4.7500	97.600%
2.0000	88.200%
0.4250	82.700%
0.0750	78.700%
0.0200	65.500%
0.0050	42.400%
0.0020	34.900%
0.0010	30.000%

Structure #2 (Diversion Ditch (Pond 1)):

Size (mm)	In/Out
19.0000	100.000%
9.5000	100.000%
4.7500	97.601%
2.0000	88.201%
0.4250	82.701%
0.0750	78.701%
0.0200	65.501%
0.0050	42.400%
0.0020	34.900%
0.0010	30.000%

Structure #3 (Diversion Ditch (Pond 1)

):	
Size (mm)	In/Out
19.0000	100.000%
9.5000	100.000%
4.7500	99.200%
2.0000	96.057%
0.4250	94.219%
0.0750	90.361%
0.0200	75.205%
0.0050	48.682%
0.0020	40.071%
0.0010	34.445%

A23-66

Size (mm)	In/Out	
19.0000	100.000%	
9.5000	100.000%	
4.7500	99.640%	
2.0000	98.217%	
0.4250	97.385%	
0.0750	93.566% 77.872%	
0.0200		
0.0050	50.409%	
0.0020	41.492%	
0.0010	35.667%	

Structure #4 (Diversion Ditch (Pond 1)):

Structure #5 (Diversion Ditch (Pond 1)):

Size (mm)	In/Out
19.0000	100.000%
9.5000	100.000%
4.7500	98.850%
2.0000	94.336%
0.4250	91.694%
0.0750	87.805%
0.0200	73.078%
0.0050	47.305%
0.0020	38.938%
0.0010	33.471%

Structure #10 (Diversion Ditch (Pond 1)):

Size (mm)	In/Out
19.0000	100.000%
9.5000	100.000%
4.7500	98.977%
2.0000	94.954%
0.4250	92.600%
0.0750	88.978%
0.0200	74.054%
0.0050	47.937%
0.0020	39.458%
0.0010	33.918%

Filename: Spurlock25.sc4

Structure	e #11 (P	ond 1):
Size (mm)	in In the des	Out
19.0000	100.000%	100.000%
9.5000	100.000%	100.000%
4.7500	98.967%	100.000%
2.0000	94.905%	100.000%
0.4250	92.528%	100.000%
0.0750	88.903%	100.000%
0.0200	73.992%	100.000%
0.0050	47.897%	76.064%
0.0020	39.425%	62.609%
0.0010	33.889%	53.819%

Structure #19:

Size (mm)	In/Out
19.0000	100.000%
9.5000	100.000%
4.7500	100.000%
2.0000	100.000%
0.4250	100.000%
0.0750	100.000%
0.0200	100.000%
0.0050	75.955%
0.0020	62.519%
0.0010	53.741%

Structure Detail:

Structure #16 (Vegetated Channel)

Diversion Ditch (Pond 2)

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Freeboard	eeboard Limiting Mult. x Velocity (VxD) (fps)
2.00	2.0:1	2.0:1	1.5	D, B	10.00	5.0

Vegetated Channel Results:

and a	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	22.15 cfs		22.15 cfs	
Depth:	1.32 ft	1.45 ft	1.99 ft	2.19 ft
Top Width:	7.28 ft	7.81 ft	9.97 ft	10.76 f
Velocity:	3.62 fps		1.86 fps	
X-Section Area:	6.12 sq ft		11.92 sq ft	
Hydraulic Radius:	0.775		1.093	
Froude Number:	0.69		0.30	
Roughness Coefficient:	0.0426		0.1041	

Structure #12 (Vegetated Channel)

Diversion Ditch (Pond 2)

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard Freeboard % of Depth Mult. x (VxD)	Limiting Velocity (fps)
2.00	2.0:1	2.0:1	1.6	D, B		10.00	5.0

Vegetated Channel Results:

Copyright 1998 Pamela J. Schwab Civil Software Design

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	1.54 cfs		1.54 cfs	11
Depth:	0.46 ft	0.51 ft	0.94 ft	1.04 ft
Top Width:	3.84 ft	4.02 ft	5.78 ft	6.15 ft
Velocity:	1.15 fps	-	0.42 fps	
X-Section Area:	1.34 sq ft		3.67 sq ft	
Hydraulic Radius:	0.331		0.590	
Froude Number:	0.34		0.09	
Roughness Coefficient:	0.0783		0.3149	

Structure #13 (Riprap Channel)

Diversion Ditch (Pond 2)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
2.00	2.0:1	2.0:1	1.0		10.00	

Riprap Channel Results:

PADER Method - Steep Slope Design

"一般"之后,有重大	w/o Freeboard	w/ Freeboard
Design Discharge:	27.04 cfs	
Depth:	1.35 ft	1.49 ft
Top Width:	7.41 ft	7.95 ft
Velocity:	4.25 fps	
X-Section Area:	6.37 sq ft	
Hydraulic Radius:	0.791	
Froude Number:	0.81	
Manning's n:	0.0300	
Dmin:	1.00 in	
D50:	1.50 in	
Dmax:	3.00 in	

Structure #14 (Riprap Channel)

Diversion Ditch (Pond 2)

Trapezoidal Riprap Channel Inputs:

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
2.00	2.0:1	2.0:1	1.1		10.00	

Material: Riprap

Riprap Channel Results:

	w/o Freeboard	w/ Freeboard
Design Discharge:	71.63 cfs	
Depth:	2.19 ft	2.40 ft
Top Width:	10.75 ft	11.62 ft
Velocity:	5.14 fps	
X-Section Area:	13.93 sq ft	
Hydraulic Radius:	1.183	
Froude Number:	0.80	
Manning's n:	0.0340	
Dmin:	2.00 in	
D50:	3.00 in	
Dmax:	4.50 in	

PADER Method - Mild Slope Design

Structure #15 (Riprap Channel)

Diversion Ditch (Pond 2)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
2.00	2.0:1	2.0:1	1.4		10.00	

Riprap Channel Results:

PADER Method - Steep Slope Design

w/o Freeboard	w/ Freeboard
99.35 cfs	
2.39 ft	2.63 ft
11.58 ft	12.54 ft
6.11 fps	
	99.35 cfs 2.39 ft 11.58 ft

	w/o Freeboard	w/ Freeboard
X-Section Area:	16.26 sq ft	
Hydraulic Radius:	1.279	
Froude Number:	0.91	
Manning's n:	0.0340	
Dmin:	2.00 in	
D50:	3.00 in	
Dmax:	4.50 in	

Structure #17 (Riprap Channel)

Diversion Ditch (Pond 2)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	FreeboardFreeboardDepth (ft)% of Depth	Freeboard Mult. x (VxD)
2.00	2.0:1	2.0:1	6.4	10.00	

Riprap Channel Results:

PADER Method - Steep Slope Design

The state of the second	w/o Freeboard	w/ Freeboard
Design Discharge:	140.48 cfs	
Depth:	2.33 ft	2.56 ft
Top Width:	11.30 ft	12.23 ft
Velocity:	9.08 fps	
X-Section Area:	15.46 sq ft	
Hydraulic Radius:	1.247	
Froude Number:	1.37	
Manning's n:	0.0480	
Dmin:	5.00 in	
D50:	9.00 in	
Dmax:	12.00 in	

Structure #18 (Pond)

Pond 2

Pond Inputs:

Permanent Pool Elev: 806.00

Copyright 1998 Pamela J. Schwab Civil Software Design

Permanent Pool:	0.08 ac-ft
*Sediment Storage:	1.00 ac-ft
Dead Space:	20.00 %

*Sediment capacity was entered by user

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
812.00	30.00	2.00:1	2.00:1	20.00

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev	Number of Holes per Elev
42.00	7.00	36.00	62.00	2.00	0.0240	809.00	4

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev	Number of Holes per Elev
42.00	7.00	36.00	62.00	2.00	0.0240	809.00	4

Pond Results:

ation: 811.39
Time: 0.26 hrs
Time: 0.59 days
iency: 33.14 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	$\begin{split} & = \left(\begin{array}{c} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{j=$
805.66	0.228	0.000	0.000		Top of Sed. Storage
806.00	0.239	0.079	0.000		Low hole SPW #2 Low hole SPW #3
806.50	0.256	0.202	5.348	7.40	
807.00	0.273	0.335	7.563	2.70	
807.50	0.291	0.475	14.611	1.90	
808.00	0.309	0.625	18.260	0.55	

SEDCAD 4 for Windows Copyright 1998 Pamela J. Schwab Civil Software Design

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
808.50	0.328	0.785	26.570	0.35	
809.00	0.348	0.954	31.360	0.20	Spillway #2 Spillway #3
809.50	0.368	1.133	35.372	0.30	
810.00	0.389	1.322	68.173	0.35	
810.50	0.411	1.522	113.474	0.15	
811.00	0.433	1.733	131.028	0.10	
811.39	0.451	1.906	143.123	0.10	Peak Stage
811.50	0.456	1.955	146.494		
812.00	0.479	2.188	160.476		Spillway #1
812.50	0.513	2.436	195.284		
813.00	0.549	2.702	229.202		
813.50	0.585	2.985	292.538		
814.00	0.623	3.287	361.265		

Detailed Discharge Table

Elevation	Emergency Spillway (cfs)	Perf. Riser (cfs)	Perf, Riser (cfs)	Combined Total Discharge (cfs)
805.66	0.000	0.000	0.000	0.000
806.00	0.000	6.00>0.000	6.00>0.000	0.000
806.50	0.000	2.674	2.674	5.348
807.00	0.000	6.00>3.782	6.00>3.782	7.563
807.50	0.000	7.306	7.306	14.611
808.00	0.000	6.00>9.130	6.00>9.130	18.260
808.50	0.000	13.285	13.285	26.570
809.00	0.000	15.680	15.680	31.360
809.50	0.000	17.686	17.686	35.372
810.00	0.000	34.086	34.086	68.173
810.50	0.000	56.737	56.737	113.474
811.00	0.000	65.514	65.514	131.028
811.50	0.000	73.247	73.247	146.494
812.00	0.000	80.238	80.238	160.476
812.50	21.950	86.667	86.667	195.284
813.00	43.900	92.651	92.651	229.20
813.50	95.996	98.271	98.271	292.538
814.00	155.596	102.835	102.835	361.26

Structure #6 (Vegetated Channel)

Filename: Spurlock25.sc4

Diversion Ditch (Pond 1)

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Freeboard Freeboard Depth (ft) % of Depth Mult. x (VxD)	Limiting Velocity (fps)
2.00	2.0:1	2.0:1	2.9	D, B	10.00	5.0

Vegetated Channel Results:

1	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	10.86 cfs		10.86 cfs	
Depth:	0.84 ft	0.93 ft	1.37 ft	1.50 ft
Top Width:	5.37 ft	5.71 ft	7.46 ft	8.01 ft
Velocity:	3.49 fps		1.68 fps	
X-Section Area:	3.11 sq ft		6.46 sq ft	
Hydraulic Radius:	0.539		0.797	
Froude Number:	0.81		0.32	
Roughness Coefficient:	0.0481		0.1296	

Structure #7 (Riprap Channel)

Diversion Ditch (Pond 1)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
2.00	2.0:1	2.0:1	2.0	1	10.00	

Riprap Channel Results:

PADER Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	63.78 cfs	
Depth:	1.84 ft	2.02 ft
Top Width:	9.36 ft	10.09 ft
Velocity:	6.11 fps	
X-Section Area:	10.45 sq ft	

Copyright 1998 Pamela J. Schwab Civil Software Design

1. 上有法理规则	w/o Freeboard w/ Freeboar	d
Hydraulic Radius:	1.021	
Froude Number:	1.02	
Manning's n:	0.0350	
Dmin:	2.00 in	
D50:	3.00 in	
Dmax:	4.50 in	

Structure #8 (Riprap Channel)

Diversion Ditch (Pond 1)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
2.00	2.0:1	2.0:1	1.1		10.00	

Riprap Channel Results:

PADER Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	98.45 cfs	
Depth:	2.51 ft	2.77 ft
Top Width:	12.06 ft	13.06 ft
Velocity:	5.57 fps	
X-Section Area:	17.67 sq ft	
Hydraulic Radius:	1.334	
Froude Number:	0.81	
Manning's n:	0.0340	
Dmin:	2.00 in	
D50:	3.00 in	
Dmax:	4.50 in	

Structure #9 (Riprap Channel)

Diversion Ditch (Pond 1)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Copyright 1998 Pamela J. Schwab Civil Software Design

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
2.00	2.0:1	2.0:1	13.8		10.00	

Riprap Channel Results:

PADER Method - Steep Slope Design

N that end V	v/o Freeboard	/ Freeboard
Design Discharge:	151.35 cfs	
Depth:	2.10 ft	2.31 ft
Top Width:	10.40 ft	11.24 ft
Velocity:	11.63 fps	
X-Section Area:	13.01 sq ft	
Hydraulic Radius:	1.143	
Froude Number:	1.83	
Manning's n:	0.0520	
Dmin:	7.00 in	
D50:	12.00 in	
Dmax:	18.00 in	

Structure #1 (Vegetated Channel)

Diversion Ditch (Pond1)

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
2.00	2.0:1	2.0:1	2.0	D, B		10.00		5.0

Vegetated Channel Results:

	Stability Class D w/o Freeboard	Stability Class D w/ Freeboard	Capacity Class B w/o Freeboard	Capacity Class B w/ Freeboard
Design Discharge:	12.57 cfs		12.57 cfs	
Depth:	0.99 ft	1.09 ft	1.58 ft	1.74 ft
Top Width:	5.96 ft	6.35 ft	8.32 ft	8.95 ft
Velocity:	3.19 fps		1.54 fps	
X-Section Area:	3.93 sq ft		8.15 sq ft	
Hydraulic Radius:	0.613		0.899	
Froude Number:	0.69		0.27	

Filename: Spurlock25.sc4

Copyright 1998 Pamela J. Schwab Civil Software Design

A CARLES SE WARRAN	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Roughness Coefficient:	0.0475		0.1273	

Structure #2 (Riprap Channel)

Diversion Ditch (Pond 1)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
2.00	2.0:1	2.0:1	2.7		10.00	

Riprap Channel Results:

PADER Method - Steep Slope Design

"公司是一门的事	w/o Freeboard	w/ Freeboard
Design Discharge:	25.40 cfs	
Depth:	1.15 ft	1.26 ft
Top Width:	6.58 ft	7.04 ft
Velocity:	5.17 fps	
X-Section Area:	4.91 sq ft	
Hydraulic Radius:	0.690	
Froude Number:	1.05	
Manning's n:	0.0370	
Dmin:	2.00 in	
D50:	3.00 in	
Dmax:	4.50 in	

Structure #3 (Riprap Channel)

Diversion Ditch (Pond 1)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

23

Copyright 1998 Pamela J. Schwab Civil Software Design

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Freeboard Depth (ft) % of Depth	Mult y
2.00	2.0:1	2.0:1	1.5	10.0	0

Riprap Channel Results:

PADER Method - Steep Slope Design

w/o Freeboard	w/ Freeboard
52.75 cfs	
1.80 ft	1.98 ft
9.21 ft	9.93 ft
5.23 fps	
10.09 sq ft	
1.004	
0.88	
0.0350	
2.00 in	
3.00 in	
4.50 in	
	52.75 cfs 1.80 ft 9.21 ft 5.23 fps 10.09 sq ft 1.004 0.88 0.0350 2.00 in 3.00 in

Structure #4 (Riprap Channel)

Diversion Ditch (Pond 1)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratlo	Slope (%)	Freeboard Freeboard Depth (ft) % of Dept	Mult x
2.00	2.0:1	2.0:1	1.1	10.0	00

Riprap Channel Results:

PADER Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	102.84 cfs	
Depth:	2.56 ft	2.82 ft
Top Width:	12.25 ft	13.28 ft
Velocity:	5.63 fps	
X-Section Area:	18.26 sq ft	
Hydraulic Radius:	1.356	
Froude Number:	0.81	

Copyright 1998 Pamela J. Schwab Civil Software Design

	w/o Freeboard	w/ Freeboard
Manning's n:	0.0340	
Dmin:	2.00 in	
D50:	3.00 in	
Dmax:	4.50 in	

Structure #5 (Riprap Channel)

Diversion Ditch (Pond 1)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Freeboard Freeboard Depth (ft) % of Depth Mult. × (VxD)
2.00	2.0:1	2.0:1	17.9	10.00

Riprap Channel Results:

PADER Method - Steep Slope Design

·····································	w/o Freeboard	w/ Freeboard
Design Discharge:	168.22 cfs	
Depth:	2.13 ft	2.34 ft
Top Width:	10.52 ft	11.37 ft
Velocity:	12.63 fps	
X-Section Area:	13.32 sq ft	
Hydraulic Radius:	1.156	
Froude Number:	1.98	
Manning's n:	0.0550	
Dmin:	7.00 in	
D50:	12.00 in	
Dmax:	18.00 in	

Structure #10 (Riprap Channel)

Diversion Ditch (Pond 1)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Copyright 1998 Pamela J. Schwab Civil Software Design

Bottom Width (ft)}	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
3.00	3.0:1	3.0:1	5.4		10.00	

Riprap Channel Results:

PADER Method - Steep Slope Design

5 ×	w/o Freeboard	w/ Freeboard
Design Discharge:	332.70 cfs	
Depth:	2.84 ft	3.13 ft
Top Width:	20.07 ft	21.78 ft
Velocity:	10.14 fps	
X-Section Area:	32.82 sq ft	
Hydraulic Radius:	1.563	
Froude Number:	1.40	
Manning's n:	0.0460	
Dmin:	5.00 in	
D50:	9.00 in	
Dmax:	12.00 in	

Structure #11 (Pond)

Pond 1

Pond Inputs:

Permanent Pool Elev:	611.50
Permanent Pool:	0.08 ac-ft
*Sediment Storage:	1.90 ac-ft
Dead Space:	20.00 %

*Sediment capacity was entered by user

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
621.00	30.00	2.00:1	2.00:1	25.00

Perforated Riser

Riser Diameter (in)	Ri	ser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev	Number of Holes per Elev
42.00		7.00	36.00	94.00	2.00	0.0240	613.50	6

Filename: Spurlock25.sc4

Printed 02-14-2002

.

Copyright 1998 Pamela J. Schwab Civil Software Design

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev	Number of Holes per Elev
42.00	7.00	36.00	94.00	2.00	0.0240	613.00	6

Pond Results:

	Peak Elevation:	620.98
1	H'graph Detention Time:	0.22 hrs
	Dewater Time:	0.59 days
	Trap Efficiency:	37.03 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
611.26	0.316	0.000	0.000		Top of Sed. Storage
611.50	0.324	0.078	0.000		Low hole SPW #2
612.00	0.341	0.245	7.131	5.55	Low hole SPW #3
612.50	0.358	0.419	17.215	5.45	
613.00	0.376	0.603	29.566	1.50	Spillway #3
613.50	0.394	0.796	36.697	0.55	Spillway #2
614.00	0.413	0.997	62.382	0.40	
614.50	0.431	1.208	90.823	0.10	
615.00	0.449	1.428	122.251	0.05	
615.50	0.467	1.657	138.761	0.05	
616.00	0.486	1.895	153.485		
616.50	0.505	2.143	166.905	0.05	
617.00	0.525	2.401	179.318	0.05	
617.50	0.545	2.668	187.185		
618.00	0.565	2.945	190.817	0.05	
618.50	0.586	3.233	194.286	0.05	
619.00	0.607	3.531	197.695	0.05	
619.50	0.628	3.840	201.045		
620.00	0.650	4.159	204.340	0.05	
620.50	0.669	4.489	207.583	0.05	
620.98	0.688	4.818	210.678	0.10	Peak Stage
621.00	0.688	4.829	210.776		Spillway #1
621.50	0.708	5.178	241.088		
622.00	0.728	5.537	271.354		

Elevation-Capacity-Discharge Table

Filename: Spurlock25.sc4

SEDCAD 4 for Windows Copyright 1998 Pamela J. Schwab Civil Software Design

Elevation	Area (ac)	Capacity (ac-ft)	Discharge	Dewater Time (hrs)	
622.50	0.748	5.906	338.160		
623.00	0.769	6.285	413.479		
623.50	0.790	6.675	508.112		
624.00	0.811	7.075	621.920		

Detailed Discharge Table

Elevation	Emergency Spillway (cfs)	Perf. Riser (cfs)	Perf. Riser (cfs)	Combined Total Discharge (cfs)
611.26	0.000	0.000	0.000	0.000
611.50	0.000	8.00>0.000	0.000	0.000
612.00	0.000	7.131	8.00>0.000	7.13
612.50	0.000	8.00>10.084	7.131	17.215
613.00	0.000	19.482	10.084	29.566
613.50	0.000	24.346	12.351	36.697
614.00	0.000	28.296	34.086	62.382
614.50	0.000	34.086	56.737	90.823
615.00	0.000	56.737	65.514	122.25
615.50	0.000	65.514	73.247	138.76
616.00	0.000	73.247	80.238	153.48
616.50	0.000	80.238	86.667	166.90
617.00	0.000	86.667	92.651	179.31
617.50	0.000	92.651	94.534	187.18
618.00	0.000	94.534	96.284	190.81
618.50	0.000	96.284	98.003	194.28
619.00	0.000	98.003	99.692	197.69
619.50	0.000	99.692	101.353	201.04
620.00	0.000	101.353	102.987	204.34
620.50	0.000	102.987	104.596	207.58
621.00	0.000	104.596	106.180	210.77
621.50	27.166	106.180	107.742	241.08
622.00	54.332	107.742	109.280	271.35
622.50	118.082	109.280	110.798	338.16
623.00	190.387	110.798	112.295	413.47
623.50	282.045	112.295	113.772	508.11
624.00	392.918	113.772	115.230	621.92

Structure #19 (Null)

Filename: Spurlock25.sc4

Charl	CUUC	SWS Area	Time of	Musk K	ST. Ballet	Curve	A	Peak	Runoff
Stru #	SWS #	(ac)	Conc	(hrs)	Musk X	Number	UHS	Discharge	Volume
173			(hrs)	1.11.24 - 1.02 - 1.			The first	(cfs)	(ac-ft)
#16	$\frac{1}{\Sigma}$	11.100	0.129	0.000	0.000	81.000	М	22.15	2.599
		11.100						22.15	2.599
#12	1	0.540	0.017	0.000	0.000	81.000	М	1.54	0.126
	Σ	0.540						1.54	0.126
#13	1	13.500	0.212	0.000	0.000	81.000	М	25.64	3.160
	Σ	14.040						27.04	3.287
#14	1	25.200	0.200	0.000	0.000	81.000	М	48.32	5.900
÷	Σ	39.240						71.63	9.186
#15	1	11.300	0.052	0.000	0.000	81.000	М	32.28	2.645
	Σ	50.540						99.35	11.832
#17	1	9.800	0.060	0.000	0.000	81.000	M	28.00	2.294
	Σ	71.440						140.48	16.725
#18	1	10.500	0.031	0.000	0.000	81.000	M	30.00	2.458
	Σ	81.940						170.48	19.183
#6	1	3.800	0.055	0.000	0.000	81.000	М	10.86	0.890
	Σ	3.800						10.86	0.890
#7	1	27.000	0.190	0.000	0.000	81.000	М	52.50	6.321
	Σ	30.800						63.78	7.211
#8	1	18.270	0.154	0.000	0.000	81.000	М	36.46	4.277
	Σ	49.070						98.45	11.488
#9	1	21.100	0.080	0.000	0.000	81.000	M	60.28	4.940
	Σ	70.170						151.35	16.427
#1	1	4.400	0.076	0.000	0.000	81.000	М	12.57	1.030
	Σ	4.400						12.57	1.030
#2	1	4.490	0.073	0.000	0.000	81.000	м	12.83	1.051
	Σ	8.890						25.40	2.081
#3	1	14.700	0.130	0.000	0.000	81.000	М	29.33	3.441
	Σ	23.590						52.75	5.523
#4	1	25.700	0.148	0.000	0.000	81.000	М	51.28	6.017
	Σ	49,290						102.84	11,539

Subwatershed Hydrology Detail:

Filename: Spurlock25.sc4

Copyright 1998 Pamela J. Schwab Civil Software Design

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#5	1	24.600	0.116	0.000	0.000	81.000	М	70.28	5.759
	Σ	73.890						168.22	17.298
#10	1	4.600	0.046	0.000	0.000	81.000	М	13.14	1.077
	Σ	148.660						332.70	34.802
#11	1	6.280	0.034	0.000	0.000	81.000	M	17.94	1.470
	Σ	154.940						350.64	36.273
#19	Σ	236.880						352.59	55.456

Subwatershed Sedimentology Detail:

Stru #	SWS #	Soil K	L (ft)	S (%)	C	P	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#16	1	0.350	190.00	25.00	0.0420	0.1500	1	13.1	8,484	2.29	1.23
	Σ							13.1	8,484	2.29	1.23
#12	1	0.350	110.00	25.00	0.0420	0.1500	1	0.4	4,188	1.52	0.83
	Σ							0.4	4,188	1,52	0,83
#13	1	0.350	160.00	25.00	0.0420	0.1500	1	14.3	7,755	1.98	1.06
	Σ		5					14.7	7,420	1.92	1.05
#14	1	0.350	210.00	25.00	0.0420	0.2000	1	45.3	13,177	3.40	1.82
	Σ	1-11 - 1						60.0	11,545	2.98	1.54
#15	1	0.350	190.00	25.00	0.0420	0.1500	1	16.3	8,355	3.03	1.64
	Σ							76.3	10,917	3.07	1.57
#17	1	0.350	420.00	25.00	0.0030	0.1500	1	1.6	947	0.34	0.19
	Σ							91.0	9,511	2.67	1.30
#18	1	0.350	275.00	25.00	0.0030	0.1500	1	1.3	741	0.27	0.15
	Σ							92.3	9,045	2,55	1.13
#6	1	0.350	125.00	25.00	0.0420	0.1500	1	3.7	5,708	2.07	1.12
	Σ			1				3.7	5,708	2.07	1.12
#7	1	0.350	200.00	25.00	0.0420	0.1500	1	36.0	9,693	2.54	1.36
	Σ							39.7	9,327	2,54	1.33
#8	1	0.350	200.00	25.00	0.0420	0.1500	1	23.6	9,285	2.51	1.34
	Σ							63.3	9,328	2.53	1.33

Filename: Spurlock25.sc4

Printed 02-14-2002

30

SEDCAD 4 for Windows Copyright 1998 Pamela J. Schwab Civil Software Design

Stru #	SWS #	Soil K	L (ft)	S (%)	C	$\mathbf{P}_{i_{1},\ldots,i_{n}}^{i_{1},\ldots,i_{n}}$	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#9	1	0.350	100.00	33.33	0.0420	0.1500	1	30.1	8,270	3.00	1.63
	Σ							93.4	8,907	2.68	1.43
#1	1	0.350	130.00	25.00	0.0420	0.1500	1	4.5	5,947	2.16	1.17
	Σ							4.5	5,947	2.16	1.17
#2	1	0.350	150.00	25.00	0.0420	0.1500	1	5.0	6,495	2.36	1.28
	Σ							9.5	6,224	2.26	1.22
#3	1	0.350	210.00	25.00	0.0420	0.1500	1	19.0	9,315	2.51	1.35
	Σ							28.6	14,183	4.27	1.29
#4	1	0.350	200.00	25.00	0.0420	0.1500	1	34.5	9,672	2.61	1.40
	Σ							63.1	11,919	3.39	1.35
#5	1	0.350	120.00	33.33	0.0420	0.1500	1	39.9	9,393	3.41	1.85
	Σ							103.0	9,114	2.87	1.53
#10	1	0.350	575.00	36.50	0.0030	0.1500	1	1.2	1,541	0.56	0.30
	Σ							197.6	8,721	2.69	1.44
#11	1	0.350	425.00	36.50	0.0030	0.1500	1	1.4	1,335	0.48	0.26
	Σ							199.1	8,345	2.58	1.39
#19	Σ							187.1	5,159	0.47	0.00

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	25.00	29.00	116.00	4.000	0.008
		8. Large gullies, diversions, and low flowing streams	2.25	25.00	1,112.00	4.490	0.068
#1	1	Time of Concentration:					0.076
#2	1	3. Short grass pasture	25.00	25.50	102.00	4.000	0.007
		6. Grassed waterway	2.00	5.74	287.00	2.120	0.037
		8. Large gullies, diversions, and low flowing streams	24.81	64.00	258.00	14.940	0.004
		8. Large gullies, diversions, and low flowing streams	2.67	12.00	449.00	4.900	0.025
#2	1	Time of Concentration:					0.073
#3	1	3. Short grass pasture	25.00	45.50	182.00	4.000	0.012
		6. Grassed waterway	2.00	8.26	413.00	2.120	0.054
		8. Large gullies, diversions, and low flowing streams	25.73	184.00	715.00	15.210	0.013

Filename: Spurlock25.sc4

SEDCAD 4 for Windows Copyright 1998 Pamela J. Schwab Civii Software Design

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
		8. Large gullies, diversions, and low flowing streams	1.48	10.00	676.04	3.640	0.05
#3	1	Time of Concentration:					0.130
#4	1	3. Short grass pasture	25.00	14.25	57.00	4.000	0.00
		6. Grassed waterway	2.00	7.78	389.00	2.120	0.05
		8. Large gullies, diversions, and low flowing streams	25.00	231.50	926.00	15.000	0.01
		8. Large gullies, diversions, and low flowing streams	1.12	10.00	892.00	3.170	0.07
#4	1	Time of Concentration:					0.148
#5	1	3. Short grass pasture	25.00	37.25	149.00	4.000	0.01
		6. Grassed waterway	2.00	10.04	502.00	2.120	0.06
		8. Large gullies, diversions, and low flowing streams	23.88	154.00	645.00	14.650	0.012
		8. Large gullies, diversions, and low flowing streams	17.94	244.00	1,360.01	12.700	0.02
#5	1	Time of Concentration:					0.110
#6	1	3. Short grass pasture	25.00	39.75	159.00	4.000	0.01
		8. Large gullies, diversions, and low flowing streams	2.93	24.00	818.00	5.130	0.04
#6	1	Time of Concentration:					0.05
#7	1	3. Short grass pasture	25.00	25.75	103.00	4.000	0.002
		6. Grassed waterway	2.00	12.86	643.00	2.120	0.084
		8. Large gullies, diversions, and low flowing streams	24.91	200.00	803.00	14.970	0.014
		8. Large gullies, diversions, and low flowing streams	2.00	26.00	1,300.00	4.240	0.08
#7	1	Time of Concentration:					0.19
#8	1	3. Short grass pasture	25.00	65.00	260.00	4.000	0.018
1		6. Grassed waterway	2.00	9.22	461.00	2.120	0.06
		8. Large gullies, diversions, and low flowing streams	25.00	165.00	660.00	15.000	0.01
		8. Large gullies, diversions, and low flowing streams	1.10	8.00	730.06	3.140	0.06
#8	1	Time of Concentration:					0.154
#9	1 -	3. Short grass pasture	33.33	22.00	66.00	4.610	0.003
		6. Grassed waterway	1.86	4.00	215.00	2.040	0.029
		8. Large gullies, diversions, and low flowing streams	24.93	91.00	365.00	14.970	0.00
		8. Large gullies, diversions, and low flowing streams	13.82	236.00	1,708.00	11.150	0.042
#9	1	Time of Concentration:					0.08
#10	1	3. Short grass pasture	36.50	265.00	726.02	4.830	0.04
		8. Large gullies, diversions, and low flowing streams	5.44	8.00	147.00	6.990	0.00
#10	1	Time of Concentration:					0.04

Filename: Spurlock25.sc4

SEDCAD 4 for Windows Copyright 1998 Pamela J. Schwab Civil Software Design

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#11	1	3. Short grass pasture	36.50	219.73	602.00	4.830	0.034
#11	1	Time of Concentration:					0.034
#12	1	3. Short grass pasture	25.22	29.00	115.00	4.010	0.00
	_	8. Large gullies, diversions, and low flowing streams	1.57	2.25	143.00	3.760	0.01
#12	1	Time of Concentration:					0.017
#13	1	3. Short grass pasture	25.00	33.50	134.00	4.000	0.00
		6. Grassed waterway	1.99	10.50	528.00	2.110	0.06
		8. Large gullies, diversions, and low flowing streams	24.91	72.00	289.00	14.970	0.00
		8. Large gullies, diversions, and low flowing streams	1.00	14.00	1,395.11	- 3.000	0.12
#13	1	Time of Concentration:					0.21
#14	1	3. Short grass pasture	24.79	29.00	117.00	3.980	0.00
		6. Grassed waterway	2.01	11.00	548.00	2.120	0.07
		8. Large gullies, diversions, and low flowing streams	17.55	172.00	980.00	12.560	0.02
		8. Large gullies, diversions, and low flowing streams	1.07	12.00	1,120.02	3.100	0.10
#14	1	Time of Concentration:	41				0.20
#15	1	3. Short grass pasture	25.15	42.00	167.00	4.010	0.01
		6. Grassed waterway	2.00	3.50	175.00	2.120	0.02
		8. Large gullies, diversions, and low flowing streams	25.00	186.75	747.00	15.000	0.01
		8. Large gullies, diversions, and low flowing streams	1.39	1.10	79.00	3.540	0.00
#15	1	Time of Concentration:					0.052
#16	1	3. Short grass pasture	25.00	40.50	162.00	4.000	0.01
		6. Grassed waterway	2.00	1.30	65.00	2.120	0.008
		8. Large gullies, diversions, and low flowing streams	25.04	166.00	663.00	15.010	0.01
		8. Large gullies, diversions, and low flowing streams	1.52	20.00	1,315.01	3.690	0.098
#16	1	Time of Concentration:					0.129
#17	1	7. Paved area and small upland gullies	1.00	0.36	36.00	2.010	0.004
		8. Large gullies, diversions, and low flowing streams	6.38	99.00	1,552.00	7.570	0.05
#17	1	Time of Concentration:					0.060
#18	1	3. Short grass pasture	25.00	72.50	290.00	4.000	0.02
		8. Large gullies, diversions, and low flowing streams	10.00	38.00	380.00	9.480	0.01
#18	1	Time of Concentration:					0.03:

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 O 816-333-9400 F 816-333-3690 www.burnsmcd.com